
External Advisor for Combined
Task and Motion Planning in Belief

Space

Sunny Amatya
DIBRIS - Department of Informatics, Bioengineering, Robotics and

System Engineering

University of Genova

In partial fulfillment of the requirements for the degree of

Masters of Science in Robotics

August 30, 2018

mailto:sunnyamatya@gmail.com
http://www.dibris.unige.it
http://www.dibris.unige.it
http://www.unige.it

2

Acknowledgements

I would like to acknowledge my supervisors, Associate Professor Marco
Baglietto and Assistant Professor Fulvio Mastrogiovanni, for their
constant support and feedback. I would like to thank my colleague,
Antony Thomas for the research input and guidelines. I would further
like to extend my gratitude to Sarah Bernadini and Chiara Piacen-
tini for their continuous support in understanding the state of the art
research. Finally I would like to thank my parents for believing in
me, my siblings for required sense of humor and friends, Aayush and
Antonio, for their love and support.

To dad and mom, for without them I am nothing

Abstract

Planning algorithms are at the heart of the cooperation problems and
use various combinations of logic, graph, probabilistic and control
theory aspects. The general idea for a planning algorithm has always
been to find the least cost path, satisfying a set of given constraints.
These constraints may be logical, environmental, kinematic, resource-
associated or physical limits. Yet, most often uncertainties exist in
such scenarios and planning can only be done in the belief space, the
probability distribution over the possible states of the robot. Task
planning domains are specified using the Planning Domain Defini-
tion Language (PDDL). Techniques like, planning graphs, planning
as satisfiability and heuristic-search planning have led to the domi-
nant task planning approaches like fast downward and FF planning
systems, capable of extracting highly efficient plans. The field of mo-
tion planning has also developed profusely. Sampling based motion
planning approaches provides faster execution and better efficiency.
Probabilistic roadmaps (PRMs) and rapidly-exploring random trees
(RRTs) were two seminal works in this area, laying the foundation for
other planners to build on.

Autonomous navigation in complex real world scenarios involve dif-
ferent layers of decision making, a high-level task planning layer to
decompose tasks into subtasks and a low-level motion planner to ex-
ecute these tasks. Therefore planning should be performed in the
discrete-continuous space of task and motion planning. Over the last
few years significant research has been carried out in the area of com-
bined task and motion planning (TAMP).

Building upon the works in AI and robotics planning, we develop
a TAMP planner capable of reasoning in the belief space while ex-
tracting a plan. We use PDDL+ to model the discrete planning task
with logical predicates and numeric fluents. The problem file for the
planner contains all the information regarding the environment being
operated upon, given as initial conditions. The PDDL+ planner out-
puts a sequence of actions (a plan) that can then be passed on to the
low-level motion planner for execution. Assuming Gaussian models,

extracting an efficient plan requires performing the belief updates at
each planning stage. However PDDL+ is incapable of handling such
rigorous numerical calculations within it. Most approaches that need
to perform such calculations require an external module or semantic
attachments to perform these. Yet these semantic attachments being
external calls, blocks the task planning until the calls are returned to
the planner. Recently Bernardini et al. developed an approach to im-
plicitly trigger such external calls via external advisors. They also use
an approximation heuristic for the fluents that needs an external ad-
visor for its update. This approximation heuristic thus helps guiding
the planner faster towards the goal. We incorporate this approach
within our planner and provide the plan to the motion planner for
execution.

Furthermore, RRT with Potential Field has been introduced for sam-
pling and robust map traversing. The framework is being handled in
the ROSPlan for communication between the environment, accumu-
lated state estimation, external solver, task planner and the low-level
controller.

Contents

1 Introduction 1
1.1 Task Planning . 2
1.2 Motion Planning . 3
1.3 Combined Task and Motion Planning 4
1.4 Organization . 5

2 Background and State-of-the-art 6
2.1 Related Work . 6
2.2 Task Planner . 8

2.2.1 Heuristics in PDDL+ . 8
2.2.2 Semantic Attachments in Task Planning 9

2.3 Preliminaries . 10
2.3.1 Extended Kalman Filter 10
2.3.2 System Modeling . 11
2.3.3 System Parameters . 13

2.4 Integrated Task and Motion Planning 14

3 Problem Formulation and Implementation 16
3.1 Domain and Problem Description 16

3.1.1 Belief Updates with Semantic Attachments 17
3.1.1.1 Initial Domain Declaration 19
3.1.1.2 Initial Problem Declaration 21
3.1.1.3 Predict and Update Event Domain Declaration . 22
3.1.1.4 Domain Declaration with RRT 23
3.1.1.5 Automatic Problem Declaration from ROSPlan

with RRT . 25
3.2 Software Architecture . 26

3.2.1 Planner Framework . 27
3.2.2 Planner Framework with Semantic Attachment 29
3.2.3 External Library . 30

3.3 Integration Architecture . 31

7

CONTENTS

3.3.1 Map Generation . 33
3.3.2 Waypoint Generation . 34

3.3.2.1 RRT over PRM 36
3.3.2.2 RRT based Potential Field Algorithm 36

3.3.3 Problem Generator . 39
3.3.4 Plan and Reference Trajectory Generation 40
3.3.5 DiNo to Esterel Plan Generator 40
3.3.6 Default Plan Execution and Trajectory generation 40

4 Experiments and Results 41
4.1 Abstract Example . 41

4.1.1 action and event for Belief Updates 41
4.1.2 Single event Based Belief Updates 42
4.1.3 Belief Update with RRT 43

4.2 ROSPlan Simulation . 43
4.2.1 Playground Environment 45
4.2.2 Corridor Environment . 51

4.3 Performance Analysis . 55

5 Conclusion and Future Work 63

A Codes and Files 70
A.1 DINO . 70

A.1.1 upm_system . 70
A.1.2 upm_statecl . 70
A.1.3 upm_util . 70
A.1.4 upm_io.cpp . 70
A.1.5 cpp_code.cpp . 70
A.1.6 ump_epilog.hpp . 71

A.2 External Advisor . 71
A.3 ROSPlan . 71

A.3.1 PDDLProblemGenerator.cpp 71
A.3.2 planningsystem.cpp . 71
A.3.3 plannerinterface.cpp . 71
A.3.4 DINOEsteralPlanParser.cpp 71
A.3.5 interfaced_planning_system.launch 71
A.3.6 RPRoadmapServer.cpp . 71
A.3.7 RPRoadmapVisualization.cpp 72
A.3.8 rosplan_roadmap_server.launch 72
A.3.9 toy.launch . 72
A.3.10 turtlebot_explorer.bash 72

8

CONTENTS

A.4 pred_update_RRT_problem.pddl 72
A.5 waypoints_RRT . 77
A.6 landmark_RRT . 78
A.7 Initial test waypoint . 78
A.8 Initial test landmark . 78

9

List of Figures

2.1 Control parameters in odometry motion model. 12
2.2 Robot’s measurement model . 12

3.1 Branching of search trees in (Blues are explored, oranges are vis-
ited. Red edges correspond to helpful actions) 28

3.2 Working of DiNo framework . 29
3.3 External Call Flowchart . 32
3.4 ROSplan Framework . 33
3.5 ROSPlan Workflow . 34
3.6 Navigation stack . 35
3.7 Playground world gazebo map . 35
3.8 Playground world rviz map . 35
3.9 PRM with 30 waypoints . 37
3.10 RRT with 30 waypoints . 37
3.11 Endpoint connection with generated RRT 38
3.12 Endpoint connection with generated RRT in Corridor environment

with 40 waypoints . 38
3.13 RRT implemented . 39

4.1 Initial test map . 42
4.2 Covariance reduction with double update 43
4.3 Covariance reduction with constant update 44
4.4 Covariance reduction with constant update and RRT 45
4.5 Covariance evolution for different test cases of the Playground world. 47
4.6 Playground test case. 48
4.7 Playground trajectory test case. 49
4.8 Playground trajectory test case. 50
4.9 Corridor environment in Gazebo. 51
4.10 Initial configuration and the trajectories for the different test cases. 52
4.10 Trajectories for the remaining test cases. 53

10

LIST OF FIGURES

4.11 Trajectory generated by the planner and trajectory executed by
ROSPlan. 57

4.12 Trajectory generated by the planner and trajectory executed by
ROSPlan. 58

4.13 Trajectory generated by the planner and trajectory executed by
ROSPlan. 59

4.14 Trajectory generated by the planner and trajectory executed by
ROSPlan. 60

4.15 Trajectory generated by the planner and trajectory executed by
ROSPlan. 61

4.16 Covariance for corridor case 1 - 10 62

11

Chapter 1

Introduction

Autonomous robots operating in complex real world scenarios require different
levels of planning to execute their tasks. High-level (task) planning helps to break
down a given set of tasks into a sequence of sub-tasks, depending on the required
level of abstraction. Actual execution of each of these sub-tasks would require
low-level control actions (i.e., motions). Hence, planning should be performed in
the task-motion or the discrete-continuous space.

In recent years, combining high-level task planning with the low-level motion
planning has been a subject of great interest among the Robotics and Artificial
Intelligence (AI) community. This is inevitable as one of the ultimate goals in
Robotics is to create autonomous agents accepting high-level task descriptions
and executing them without further human intervention. Planning frameworks
such as the Planning Domain Definition Language (PDDL) [1] mainly focus on
high-level task planning supposing that the geometric preconditions (e.g., grasp-
ing poses for a pick-up task [2]) for the robot motion to carry out these tasks
are achievable. However, in reality, such an assumption can be catastrophic as
an action or sequence of actions generated by the task planning algorithm might
turn out to be unfeasible at the controller execution level.

Let us consider a simple scenario where a robot is given the task of picking up
an object. In terms of task planning, a pick_up action would suffice, subjected
to satisfying the action preconditions, i.e., the robot hand being free and the
object being graspable. However, it is possible that the robot is too close to the
object and the pick_up action cannot be performed due to robot’s end-effector’s
reachability workspace. This would require the robot to assume a different grasp-
ing pose, invoking a motion command that leads to a suitable position. Though
a simple scenario, it clearly illustrates the need for a combined TMP strategy.
Several recent works [3, 4, 5, 2, 6, 7] have motivated the need for a combined Task
and Motion Planning (TAMP) approach pointing out the drawbacks of treating
them separately.

1

1.1 Task Planning

Planning algorithms are at the heart of the co-operation problem and use var-
ious combinations of logic theory, graph theory, probabilistic theory and control
theory. The general idea for a planning algorithm has always been to find the least
cost path that satisfies a set of given constraints. These constrains may be logical,
environmental, kinematic, resource-associated or physical limits. While operat-
ing in complex scenarios, robots encounter uncertainties. Such uncertainties may
arise due to insufficient knowledge about the environment (partial observability),
inexact robot motion, imperfect sensing. In these scenarios, the robot poses or
other variables of interest (states) can only be dealt with in terms of probabilities.
Planning is therefore done in the belief space, which is the probability distribu-
tions over the possible robot states. Such a problem falls under the category of
Partially Observable Markov Decision Processes (POMDPs) [8]. To perform effi-
ciently in these scenarios the robot needs to plan for actions, which when executed
help gain more information, thereby improving the robot’s belief. Hence the task
planner should take into account it’s current belief while synthesizing a plan. The
motion planner might encounter unexpected scenarios notwithstanding the plan
provided. This calls for a re-plan, updating the task planner with the new belief,
resulting in a cyclic interdependency. Consequently, both task and motion plan-
ning are interdependent and should not be considered separate. TAMP presents
challenges both in algorithm design and software engineering. Hence a successful
co-operation is essential between the task and motion planners.

1.1 Task Planning
Task planning or classical AI planning can be defined as the problem of synthesiz-
ing a sequence of actions from the current state, that will achieve a goal state [9].
Since the seminal work of Fikes and Nilsson [10], planning has emerged as a spe-
cific field within AI. Their STanford Research Institute Problem Solver (STRIPS)
provided a simple yet powerful way of describing a planning problem. STRIPS
provided a syntax for writing a planning tasks in terms of action schema for states,
with preconditions, add and delete effects for the actions. This syntax provided a
platform for the development of frameworks like the Planning Domain Definition
Language (PDDL) [1]. PDDL was introduced in AIPS-98 planning competition,
a higher level language for planning. The language supported basic strips action,
conditional effects, universal quantification over dynamic universe, specification
of constraints, hierarchical actions. A PDDL task specification is split into two
parts

1. domain- which specifies the list of objects, predicates and constants and
type of actions available along with its preconditions and effects.

2

1.2 Motion Planning

2. problem- specifying the initial state and the goal state.

Furthermore, information about the objects in the world and their relation-
ship to one another are required to determine the actions applicable at a given
state, via the action preconditions. The action effects change these relationships
leading the system to a new state. Since the aim of the planner is to synthesize
a set of actions that take the start state to a goal state, efficient task planning
requires heuristics. A heuristic is an estimate of the cost from any given state to
reach the goal state. Given a planning task, efficient planning systems computes
an admissible heuristic first, before proceeding to plan synthesis [11]. The task
planner also requires awareness of what is uncertain or unknown, allowing the
robot the opportunity to take further actions subject to satisfying certain con-
straints [12] or properties, providing decision theoretic trade-offs. In this thesis
we use a PDDL+ [13] based task planner, which will be discussed in detail in the
coming sections.

1.2 Motion Planning
Motion planning can be defined as finding a sequence of collision-free poses (posi-
tion and orientation) starting from a given initial pose and terminating at the goal
pose for a robot in a given configuration space [14]. Motion planning identifies a
continuous path and breaks down a desired movement into discrete motion that
satisfies movement constraint and optimizes movement aspects. A basic problem
in the motion planning requires the production of continuous motion from the
start configuration (pose) to goal configuration while avoiding obstacles. Hence
the representation of the world, robot configuration and obstacle configuration
are essential for the motion planning calculations.

There are three configuration spaces C to be considered for the motion plan-
ning, namely obstacle space Cobs, free space Cfree and target space Cgoal. The
configuration space is the set of possible states that the robot can assume in the
environment. The 3 dimensional (3-D) configuration space of the robot can be
represented by 6 parameters, (x, y, z) for position and (α, β, γ) for orientation.
For the 2-D ground robot, the position and the orientation can be reduced to
(x, y) and (θ) respectively, where the rotation is about the z-axis. The obstacle
space Cobs is the set of configurations whose intersections with the robot configu-
rations result in null space. Cfree represents the set of configurations that avoids
the collision with the obstacles, i.e., Cfree = C/Cobs. Forward kinematics are used
generally to determine if the robot’s geometry and position results in collision
with the obstacles in the environment. Lastly, the target space is the free space
denoted by the goal of the robot. Depending on global or local motion planning,

3

1.3 Combined Task and Motion Planning

the trajectory to the goal position can go through several discretized way-points
based on the observability of the map.

To compute the connectivity of the free space, grid-based algorithms are gen-
erally used for low-dimensional problems overlaying a grid on top of configuration
space. Sampling-based motion planners are widely used for high-dimensional sys-
tem [15]. Such sampling-based planners offer probabilistic completeness, guaran-
teeing that the planner will eventually find a solution if one exists. However, if so-
lution does not exist, a sampling-based planner cannot prove this negative; in such
case, the planner would not terminate or would run until a timeout [16]. Prob-
abilistic Roadmap (PRM) [17] and Rapidly-exploring Random Trees (RRT) [18]
and the variations of the techniques are used for successful sampling based mo-
tion planning. Motion planners based on gradient descent or optimization are
also common and highly efficient, but they do not offer the same probabilis-
tic completeness guarantees as the sampling-based motion planners. Sampling
based planners offer probabilistic completeness guarantees because probabilistic
completeness of the overall framework is a desired property.

Future integration of alternate motion planning approaches is possible with
their accompanying set of trade-offs. However, the integration of motion planners
in TAMP needs special attention to address the coupling of task planning and
motion planning.

1.3 Combined Task and Motion Planning
TAMP combines the discrete action selection of task planning with the continuous
path generation of motion planning. A functioning requirement of the planner is
to establish a correspondence between task operators and the associated motion
planning. The task-motion interface must translate between the low-level scene
geometry and the high-level task descriptions. For a given problem which includes
the geometry and the environmental states, the related task description should be
formulated. Furthermore, given a task action, the corresponding motion planning
problem must be addressed.

A further requirement of the task-motion planning is the requirement of com-
pleteness in planning. Motion planning approaches can only provide probabilistic
completeness. As a result the failure of motion plan does not ascertain the cor-
responding task plan to be infeasible. The motion planning might have failed
because of non-existent path or due to the insufficient planner run time. As a
result, we cannot definitively rule out an attempted task action because a motion
planner was unable to find a concrete path in the allotted time. Thus, to ensure
probabilistically complete TAMP, we must not eliminate failed task actions but
instead set them aside to be later reattempted.

4

1.4 Organization

Compared to just the traditional task planning approaches, the task planning
phase of TAMP should support generation of alternate plans. Iterating between
task planning and motion planning phases, the feedback from motion planner in-
fluences selected operation which would otherwise be infeasible. The task planner
must therefore be able to compute alternate plans for a given domain and ideally
reuse the plans for improved performance.

Furthermore, the task planner must support a sufficiently expressive specifi-
cation format to model the desired domain. Therefore, a general robotics task
and motion planner would ideally be independent of the particular domain spec-
ification syntax, enabling the use of the most suitable notations like PDDL, tem-
poral logics, etc. Motion planning frameworks functions with the provided robot
kinematics, assuming that no change in kinematics equations and changing con-
figurations only when the robot is moving. In contrast, TAMP requires rapid
updates to kinematic equations; as the robot performs an action, consequently a
change in kinematics or robot configuration is reflected. Consequently, kinematic
representations capable of efficient updates are required for TAMP. Even the best
laid plans often go awry. A robot must therefore execute its plans in a robust
manner, reacting quickly to minor disturbances, and re-planning when faced with
major unexpected changes.

1.4 Organization
The rest of this thesis is organized as follows:

1. We discuss the relevant background required to formulate our problem and
briefly discuss the current state-of-the-art in chapter 2.

2. In chapter 3 we formulate our TAMP problem.

3. In chapter 4 we discuss the key aspects of our method using a synthetic
simulation in Gazebo.

4. Chapter 5 provides concluding remarks and discuss potential future work.

5

Chapter 2

Background and State-of-the-art

Given an initial state and a suitable goal state, Task and Motion Planning
(TAMP) synthesizes a plan interleaving discrete high-level tasks with continu-
ous low-level motion. In robotics planning, reaching a goal pose from an initial
pose requires continuous collision-free motion planning. However, reaching a goal
alone is not sufficient as most often we require the goal condition to be satisfied
subjected to mission dependent costs. As a result, certain decisions are to be
made with regards to visiting specific landmarks, the order, and type of actions.
Planning and decision making should hence be performed by combining the con-
tinuous, collision-free motion planning with the discrete task planning actions.
Yet, the most important challenge for TAMP problems is finding the right cor-
respondence between the task planner and the motion planner. Given a discrete
action, TAMP planner should be able to recognize the corresponding geometry
requirements to trigger the action. Similarly, once the action is triggered, the
corresponding motion planning problems are to be identified.

In this chapter, we discuss the related work and other required background
for introducing our TAMP algorithm in Chapter 3.

2.1 Related Work
The genesis of TAMP can be credited to Fikes and Nilsson for their work on
STRIPS [10] which further led to the Shakey project [19]. Shakey’s planner had
access to basic geometric knowledge like the objects in a room, connectivity be-
tween rooms etc. However, it performed a logical search first, assuming that the
resulting robot motion plans can be formulated. This assumption limits the ca-
pability of the agent as the high-level actions may turn out to be non-executable
due to geometric limitations. The later works either carried out the logical plans
created by validating them using a robot motion planner [20] or performed a com-

6

2.1 Related Work

bined search in the logical and geometric spaces using a state composed of the
both the symbolic and geometric paths [3]. The aSyMov planner used in [3] uses
a combination of Metric-FF [21] a sampling based motion planner. In contrast,
[22] use a hybrid temporal task planner incorporating robot state uncertainty.
Srivastava et al. [2] implicitly incorporate geometric variables within the PDDL
framework. An interface layer then converts the PDDL plans to numeric values
of the symbols to check the validity of each action in the configuration space. In
practice, many of the planning problems need to plan well ahead of time which
also results in increased dimensionality, as more and more objects and constraints
get added. Longer planning horizons and higher dimensionality directly affects
the computational time for these planners. Kaelbling and Lozano-Péres [4] pro-
posed a hierarchical approach that tightly integrates the logical and geometric
planning. The complexities arising out of long horizon planning are tackled to
an extent since the planning is done at different levels of abstraction, thereby
reducing the long horizons to a number of feasible sub-plans of shorter hori-
zon. This regression based planner assumes actions are reversible actions while
backtracking. In contrast to their earlier work [23] the serializability assumption
of the subgoals are relaxed. Kaelbling and Lozano-Péres [24] further extended
their work to consider the current state uncertainty, modeling the planning prob-
lem in the belief space planning problem. Uncertain outcomes are modeled by
converting a Markov decision processes (MDP) into a weighted graph, thereby
modifying their earlier approach of hierarchical planning in the now. Belief up-
date is then performed when observations are obtained. [25] discusses an ongoing
work for TMP under partial observability, computing long-horizon policies that
are arborescent in nature.

The above discussed approaches focus on finding feasible plans sacrificing op-
timality and hence emphasize on the performance. The work of Toussaint [6]
is intriguing in the sense that optimization is performed over an objective func-
tion based on the final geometric configuration (and the cost thereby), finding
approximately locally optimal solution by minimizing an objective function. The
planning problem is modeled as a constraint satisfaction problem with symbolic
states used to define the constraints in the optimization. [26] models the motion
planning as a constraint satisfaction problem over a subset of the configuration
space. Iteratively Deepened Task and Motion Planning (IDTMP) [7] is a con-
straint based task planning approach that incorporates geometric information
(motion feasibility) at the task planning level. In our proposed algorithm, the
waypoints fed into the task planner are generated using the motion planner, sim-
ilar to the motion planner information that guides the IDTMP task planner.

7

2.2 Task Planner

2.2 Task Planner
To model the task domain we use an extension of the standard modeling language,
PDDL which has gained much popularity among the Automated Planning com-
munity. PDDL+ is an extension of PDDL ([1], [27], [28]) which provides more
modeling flexibility through the use of autonomous processes and events. Unlike
its predecessors, PDDL+ is able to model the interaction between the agent’s
behavior and changes that are initiated by the world. The inclusion of process
that runs over time allows to have a continuous numeric effect in the system.
PDDL+ distinguishes processes responsible for continuous change, from events
and actions responsible for discrete changes. The processes are similar to dura-
tive actions and the events are akin to instantaneous actions. However, processes
and events are distinct from actions since a process or an event is triggered as
soon as its precondition is satisfied whereas an action trigger depends on the
planner search strategy. Hybrid automaton, which is a formal model for a mixed
discrete-continuous systems, forms the basis for the development of the PDDL+
semantics. This formalization of PDDL+ leveraging hybrid automata paradigm
bridges the gap between planning and real time systems.

2.2.1 Heuristics in PDDL+

Hybrid domain models capture a more accurate representation of real world prob-
lems which involve continuous process than possible using discrete systems. How-
ever, solving problems represented as PDDL+ domains is very challenging due
to the construction of complex system dynamics, including non-linear process
and events. Unlike the traditional planners based on PDDL2.1, PDDL+ based
planners should be able to accommodate events and processes to reason with dis-
crete and continuous changes caused by actions and exogenous events. Such an
approach is computationally expensive if all the possible states are explored and
hence the planners should resort to efficient heuristic based search strategies.

One of the earlier planners, TM-LPSAT [29] is a fully automated planner that
can solve PDDL+ planning problems with linear continuous change. It uses a
SAT-based compilation which uses an LP solver to manage numeric constraints
while giving a discrete set of time points. However, this approach has limitations
in scalability.

UPMurphi [30] uses the planning as model-checking paradigm based on a
hand-crafted discretization of time, which enables it to handle non-linear contin-
uous changes. However, it requires human expertise to get a good discretization
and lacks heuristic guidance which adds to state space explosion. Hence, UP-
Murphi suffers from scalability issues as well.

POPF2[31] extended from POPF [32] planner is capable of reasoning with

8

2.2 Task Planner

PDDL+ events and linear processes. As a forward chaining planner, the heuristic
and enforcing techniques are used to collect best heuristic in each Relaxed Plan
Graph(RPG) state. Only the best heuristic is expanded forward to the next state.
This way it selects the first plan approved.

DiNo[33] is based on UMurphi [30] which is based on the Discrete and Validate
approach. Using planning as a model checking paradigm and relying on discretize
& validate approach, DiNo further uses Staged Relaxed Plan Graph+ (SRPG+),
a novel relaxation-based domain-independent heuristic. The heuristics help guide
the search plan for the goal based approach. DiNo further exploits the deferred
heuristic evaluation for completeness of plan in a discretized search space with
finite horizon. The planner is able to handle linear as well as non-linear processes.

SMT+ [34] planner is motivated by numerous SAT-based planning approaches,
which uses SMT encoding on the domains with nonlinear continuous change.
Happening are introduced to capture the change in state at a given point in time
due to the effects of actions, processes or events. A plan is found by building
a formula with multiple copies of the set of variables. Each Happening models
discrete change. Between Happenings there is only continuous numerical change.
The initial state is modeled and the goal constraints are added.

2.2.2 Semantic Attachments in Task Planning

Automating the navigation through the provided environment and grid requires
a range of planning and optimization techniques. PDDL+ [13] is used to model
the planning task, providing the robot a sequence of actions (a plan) that can
be passed on to the low-level motion planner for execution. Assuming Gaussian
models, extracting an efficient plan requires performing the belief prediction and
update within PDDL+ effects. Nonetheless, PDDL+ is restricted, as it is inca-
pable of handling rigorous numerical calculations. Most approaches perform such
calculations via an external module or semantic attachments, e.g. [5]. These se-
mantic attachments are explicit external calls that perform numerical calculations
during planner runtime. Yet, the effects returned by these semantic attachments
are not exploited in identifying helpful actions and hence do not provide any
heuristic guidance.

PREFPEA* planner [35] takes early ideas from STRIPS and uses Relaxed
Plan Heuristics in the Relaxed Plan Graph using Iterative Landmark Algorithm.
There are primary and secondary pre-conditions for actions, the action applied
will directly affect the primary variables. For example, in block world the shift-
ing of block from one column to next column, the secondary variables could be
the volume of the liquid in the column related to the weight of the blocks in
calculation of heuristics. This secondary variable calculation has been done in
semantic attachment. Partial Expansion A* (PEA*) algorithm has been used

9

2.3 Preliminaries

for the shortest path with the staged expansion which helps in avoiding heuristic
evaluation in sibling node. Temporal aspects are not analyzed in the domain.

Recently [36] developed a PDDL based POPF-TIF planner to implicitly trig-
ger such external calls via external advisors. These external advisors are spe-
cialized semantic attachments customized to solve specific problems given list of
variables and conditions. They classify variables into direct, indirect and free
variables. Direct (free) variables are the normal PDDL function variables whose
values are changed in the action effects, in accordance with the PDDL seman-
tics. The indirect variables are affected by the changes in the direct variables. A
change in a direct variable triggers the external advisor which in turn updates the
indirect variables. This planner is based on a temporal extension of the metric-
FF planner [21]. An intriguing feature of the POPF-TIF planner is its ability to
approximate the values of the indirect variables at the Temporal Relaxed Plan
Graph (TRPG) construction stage. Approximate effects of the indirect variables
are used while constructing the TRPG. Since the TRPG construction at each
state is performed to extract the heuristic value for that state, the approximation
values help in an efficient goal-directed search. During the forward state space
search the external advisor is called, updating the indirect variables with the ex-
act values. POPF-TIF planner is based on PDDL2.1, hence processes and events
cannot be programmed and mixed discrete-continuous planning is not possible.

2.3 Preliminaries
Let xk denote the robot pose at any time k defined by xk

.
= (pk, qk, θk), pk and qk

are the robot Cartesian coordinates and θk is the heading. We use zk to denote
the measurement acquired at time k and uk for the control action applied at time
k. We use Extended Kalman Filter (EKF) to represent the robot belief at a
given time, using the robot state mean and covariance. The standard odometry
based motion model [37] is used to represent the robot dynamics. This nonlinear
model is then linearized around the current state and control, to predict the next
states which are then updated (corrected) using the measurement(s) obtained.
In following sections, we discuss in detail the underlying model used in 2.3.2.

2.3.1 Extended Kalman Filter

The general form for the robot motion and observation models are given by

xk+1 = f(xk, uk, wk) , wk ∼ N(0,Wk) (2.1)

zk = h(xk) + vk , vk ∼ N(0, Qk) (2.2)

10

2.3 Preliminaries

where wk ∼ N(0,Wk) is the Gaussian noise in motion and vk, Qk are the noise in
the measurement and the corresponding covariance.

The models 2.1, 2.2 can be written probabilistically as p(xk+1|xk, uk) and
p(zk|xk) respectively. Given the current state xk ∼ N(µk, Pk), the control uk,
the next state parameters, namely the predicted mean µ̄k+1 and the predicted
covariance P̄k+1 can be computed using the standard EKF prediction as

µ̄k+1 = f(µk, uk)

P̄k+1 = FkPkF
T
k + VkWkV

T
k

(2.3)

where Fk is the Jacobian of f(.) with respect to x, Vk is the Jacobian of f(.)
with respect to u. For ease of representation, we denote Rk

.
= VkWkV

T
k . Upon

receiving a measurement zk, the updated parameters using EKF are given by

Kk = P̄kH
T
k (HkP̄kH

T
k +Qk)

−1

µk+1 = µ̄k+1 +Kk(zk+1 − h(µ̄k+1))

Pk+1 = (I −KkHk)P̄k

(2.4)

where Hk is the Jacobian of h(.) with respect to x, Kk is the Kalman gain
and I is a 3× 3 identity matrix.

2.3.2 System Modeling

The position of the mobile robot given by the planar Cartesian coordinates (p, q)
together with its heading θ determine the pose of the robot. So our state variable
at time k is the pose xk

.
= (pk, qk, θk). The robot dynamics is modeled using the

standard odometry based motion model

pk+1 = pk + δtransk · cos(θk + δrot1k)

qk+1 = qk + δtransk · sin(θk + δrot1k)

θk+1 = θk + δrot1k + δrot2k

(2.5)

where uk
.
= (δrot1k , δtransk , δrot2k) is the control applied. The model 2.5 assumes

that the robot implements the following commands in order: rotation by an angle
of δrot1k , translation of δtranslationk

and a final rotation of δrot2k orienting the robot
in the required direction (see Figure 2.1). These control parameters are calculated
as

δrot1k = arctan(
qk+1 − qk
pk+1 − pk

)− θk

δtransk =
√

(pk+1 − pk)2 + (qk+1 − qk)2

δrot2k = θk+1 − θk − δrot1

(2.6)

11

2.3 Preliminaries

Figure 2.1: Control parameters in odometry motion model.

Figure 2.2: Robot’s measurement model

To process the landmarks in the environment we measure the range and the
bearing of the landmark relative to the robot’s local coordinate frame. It is to
be noted that we assume the data association problem is solved and hence given
a measurement we know the corresponding landmark that generated it. Such a

12

2.3 Preliminaries

model (see Figure 2.2) can be represented by

zk =

r =
√

(lp − pk)2 + (lq − qk)2

φ = arctan(lq−qk
lp−pk

)− θk

+ vk , vk ∼ N(0, Qk) (2.7)

where (lp, lq) is the landmark coordinate. In the remainder of this section we
derive the Jacobian matrices discussed in section 2.3.1 for our motion (Eq. 2.5)
and observation (Eq. 2.7) models.

For the motion model given in Eq. 2.5, the Jacobian with respect to the state
xk denoted by Fk is given by

Fk =

∂f
∂xk

∂f
∂yk

∂f
∂θk

∂f
∂xk

∂f
∂yk

∂f
∂θk

∂f
∂xk

∂f
∂yk

∂f
∂θk

 =

1 0 −δtransk · sin(θk + δrot1k)
0 1 δtransk · cos(θk + δrot1k)
0 0 1

 (2.8)

Similarly, the Jacobian with respect to uk is given by

Vk =

∂f

∂δrot1k

∂f
∂δtransk

∂f
∂δrot2k

∂f
∂δrot1k

∂f
∂δtransk

∂f
∂δrot2k

∂f
∂δrot1k

∂f
∂δtransk

∂f
∂δrot2k

 =

−δtransk · sin(θk + δrot1k) cos(θk + δrot1k) 0
δtransk · cos(θk + δrot1k) sin(θk + δrot1k) 0

1 0 1

 (2.9)

Furthermore, the noise covariance matrix Wk is formulated as below

Wk =

α1 · δ2rot1k + α2 · δ2transk 0 0
0 α3 · δ2transk + α4 · (δ2rot1k + δ2rot2k) 0
0 0 α2 · δ2transk + α1 · δ2rot2k

 (2.10)

where α1 to α4 are robot-specific error parameters [37] modeling the accuracy
of the robot motion. As evident from the matrix above, greater accuracy implies
smaller values in α’s.

The measurement matrix Hk for the model in Eq. 2.7 is obtained by taking
the Jacobian of h(.) (see Eq. 2.2) with respect to xk

H =

[
∂r
∂xk

∂r
∂yk

∂r
∂θk

∂φ
∂xk

∂φ
∂yk

∂φ
∂θk

]
xk

=

[
− (lp−pk)

r
− (lq−qk)

r
0

(lq−qk)
r2

− (lp−pk)
r2

−1

]
(2.11)

2.3.3 System Parameters

The The initial state x0 is taken to be equal to the first position of the robot, in
our case x0 = [0, 0, 0]. The initial state error covariance matrix is initialized to
the value of the expected system error noise covariance P−

0 = Q, where

Qk = VkWkV
T
k (2.12)

13

2.4 Integrated Task and Motion Planning

During the predict state, we have to calculate the value of matix Wk. Here α1,
α2, α3 and α4 are robot related parameters[37]. For our calculation we will be
using values 0.05, 0.005, 0.1, 0.01 respectively for each α value. To being with,
the position noises are assumed to be uncorrelated and time-invariant, therefore
the matrix only has time-invariant diagonal values. The standard deviation of
position noise in the system is 60 cm for x & y position. Allowing the angle to
be 8 degrees in orientation, covariance matrix P is as follows:

P =

0.6 0.0 0.0
0.0 0.6 0.0
0.0 0.0 0.02

xk

For the update the distance (di) and bearing angle (αi) measurements put using
the standard variance in the system. To begin with, we assume that the variance
of the distance is 0.025m. For the bearing, we assume the initial variance of 0.001
radian. Hence, the noise covariance entries are:

R =

[
0.025 0.0
0.0 0.001

]
xk

In absence of the sensor reading, we use the range and bearing calculation and
introduce randomness in each measurement. With maximum 8 cm in distance
and for the bearing, the variance of -5 to 5 degrees is introduced.

2.4 Integrated Task and Motion Planning
Combining task and motion planning has been a widely researched field. Different
platforms have been used to integrate task and motion planning. TAMP problem
can be considered as an AI problem where heuristics are implemented over given
constraint satisfying certain goals.

Combined Task and Motion Planner (CTMP) [38] compile task and motion
planning problems into probabilistically complete classical AI planning problems
by planning over finite and discrete state spaces with a known initial state, de-
terministic actions, and goal states. A collision checking and motion planner is
implemented in execution stage. Functional STRIPS [39] are used for program-
ming to express procedures and constraints while best-first width search (BFWS)
has been used for searching. The simulation is performed in standard benchmark
and simulated on ROS, Gazebo and MoveIt.

[40] integrate task planning and motion planning in hierarchical form in real
time simulation. Limiting the length of the plan by committing in a top-down

14

2.4 Integrated Task and Motion Planning

fashion and being goal driven, the planner operates on detailed continuous geo-
metric representations rather than a-priori state-space discretization. Construct-
ing plan at an abstract level rather than detailed construction of the state-space
enables the planner to recursively plan and execute actions to achieve the first
step in the abstract plan. Representing the task operation in STRIPS like format,
the required motion plan is generated using A* search based standard regression-
planning algorithm that works backward from the goal. This algorithm is used
to solve single planning sub-problems. This works by generating sub-goals that
are the weakest precondition of the goal under each applicable action.

[2] integrates off-the-shelf task and motion planners without using task-
specific heuristics or hierarchical information besides initial primitive PDDL ac-
tions. This also allows the integration model to scale with different task or motion
planners. Their task planners are handled using the PDDL framework while mo-
tion plan should be expressible as logical predicates at task level to handle failure
cases. Their integration increases flexibility of the platform to build and benefit
from the literature and advances in different task and motion planners.

Unlike most of the Task and Motion Planning systems, ROSPlan [41] is a
framework that allows integration of different types of task planner and motion
planner as well as implement the results on a working environment. ROSPlan is
based on Robot Operating System (ROS) framework which is a set of software
libraries and tools used to build robotic systems. Known for a distributed and
modular design, ROS leverages these modules and nodes for function and data
sharing as well as storing. In ROSPlan, using environment model, task and mo-
tion planning is done to minimize cost while relying on less constrained domains
to push forth intelligent and robust behaviour. For visualization of module and
results, ROSPlan uses Gazebo and Rviz which are modules based on ROS that
simulates model environment and provides feedback for the robot.

15

Chapter 3

Problem Formulation and
Implementation

Planning in hybrid domains is a challenging problem that has found increas-
ing attention in the Planning community, mainly motivated by the need to
model real-world domains. In addition to modeling discrete changes, hybrid do-
mains allows us to model continuous temporal behavior using continuous vari-
ables that evolves over time. PDDL+ planning framework allows us to model
mixed discrete-continuous changes in the environment as required by the Task
and Motion Planning paradigm. PDDL+ can handle non-linear changes while
many PDDL+ based planners are not able make use of the full set of PDDL+
features. In our case, we use the DiNo planner since it enables heuristic search
for linear and non-linear systems using the entire set of PDDL+ features.

Furthermore, planning in belief space requires computationally expensive al-
gorithms with much higher complexities. For example it is required to perform
matrix operations and PDDL based planning frameworks are incapable of car-
rying out the same. To facilitate such computations, we introduce an external
advisor which can also handle such calculations for non-linear changes in the
planning phase. To automate and integrate the system further, ROSPlan frame-
work has been altered and utilized which allows merging of PDDL+, our planner,
external advisor and visualization tools. Below we discuss the formalism of our
external advisor for TAMP.

3.1 Domain and Problem Description
In this thesis, we consider a mobile robot in a known environment (i.e., map
is given) with uncertainty in its initial pose. The set of landmarks in the en-
vironment are given by l = {l1, l2, ..., ln}. The landmarks are features in the

16

3.1 Domain and Problem Description

environment and are not to be confused with the landmarks in heuristic planning
where they are intended as a set of operators such that each plan must contain
some element of this set. The goal is to reach a certain final state xg with the
localization uncertainty not greater than a given bound. Starting from an initial
pose, the corresponding goal leading plan is to be synthesized, minimizing the
makespan. We use the trace of the state covariance to quantify the uncertainty.
The uncertainty condition is mathematically written as Tr(Σk) < η. To incor-
porate belief evolution while planning, the DiNo planner is extended to support
external calls evaluating the belief at each planning stage. This procedure is sum-
marized in Algorithm 1. The belief, the process and the measurement noise are
assumed to be Gaussian.

The focal elements for modeling our planning domain are given below

• Planner discretization ∆

• The action goto_waypoint

• The event belief_update that triggers the external call to perform the belief
updates

• The process odometry that simulates the robot motion between each planner
discretization ∆.

In the following sections, we elucidate these elements in the context of our
TAMP planner.

3.1.1 Belief Updates with Semantic Attachments

State uncertainty is incorporated in our model and synthesizing an efficient plan
requires performing the belief updates within the task planner. PDDL+ processes
enable the simulation of robot motion with time and the events are leveraged to
perform the corresponding belief updates.

The are a number of ways to model the domain that is consistent with our
requirement. For initial testing, we considered the belief prediction as an event
which is fired at every time passing action. If the precondition for the event is
satisfied, the operation is carried out in external advisor. As shown in 3.1.1.1, we
introduce action goto_waypoint which takes our defined robot and waypoints
as parameters. The preconditions for the robot to go to a waypoint are that the
system is in observed state, the selected robot is at the waypoint from and the
waypoint to has not been visited. The effect of the action is to move the robot,
initiate the process odometry effect that simulates the robot motion and reset
observed state to false. Here we also assign counter variable to zero to notify
that a new goto_waypoint action has been initiated. Furthermore, we increase

17

3.1 Domain and Problem Description

Algorithm 1 Problem Statement
Input: Number of waypoints N , initial pose wp_0, goal pose wp_k k ∈
{1, ..., N}, distance between the waypoints relativeD, discretization distance
for prediction dFactor, trace of initial pose covariance cov, process discretiza-
tion ∆, upper bound on the goal trace finalTrace

1: robot_at wp_0
2: while (cov > finalTrace && ¬robot_at goalpose) do
3: go_to_wp_i ← robot_at wp_j
4: relativeD = distance{wp_j, wp_i }
5: while relativeD > −(∆ ∗ dFactor) do
6: relativeD ← {relativeD − (∆ ∗ dFactor)}
7: cov ← EKF_predict{cov}
8: for l ∈ landmark do
9: if observable{l} then
10: cov ← EKF_update{cov, l}
11: end if
12: end for
13: end while
14: robot_at wp_i
15: end while
16: return {cov}

predict_covariance and update_covariance by zero, so that the variables
are kept in use without altering their actual values. This is necessary to maintain
the value to the variables between different continuous actions.

We also initiate predict_covrariance, update_covariance and cov as
functions in domain, because the planner creates variables and methods related
to the variables only if they are defined as functions. For time-passing action
the planner triggers all satisfying events and processes. In our initial case be-
lief_predict event increases covariance while update action decreases covari-
ance. The odometry process then decreases distance by a factor of time-step.
Once the relative distance has been covered, action reached is triggered. This
action sets the robot at to waypoint and marks it as visited. Based on these ini-
tial settings, planner finds a valid trajectory to go to the goal endpoint described
in 3.1.1.2. In initial problem, waypoints declaration has been done manually.
An over-sight that all waypoints are connected has been made for simplicity.
dFactor, our discretization length and finalTrace, our maximum acceptable co-
variance are assigned in the problem file. The initial covariance of the system,
cov, predict_covariance, update_covariance are also instantiated. In this

18

3.1 Domain and Problem Description

mode, cov is the system’s current covariance while predict_covariance and
update_covariance is the value by which system covariance is updated after
each predict or update is sent from semantic attachment. Predict is an event
based handle here, which takes place at each time_passing event and changes
system covariance by predict_covariance value while also updating the posi-
tion by dFactor. However, update is an action that takes place only when a
waypoint is reached, thus making it a single event per goto action. This is a set
limitation of the initial domain format.

3.1.1.1 Initial Domain Declaration

(define (domain landmark)
(:requirements :typing :durative-actions :fluents :time :strips :

↪→ disjunctive-preconditions :durative-actions
:negative-preconditions :timed-initial-literals)

(:types
waypoint
robot

)

(:predicates
(robot_at ?r - robot ?wp - waypoint)
(visited ?wp - waypoint)
(observe)
(moving ?r - robot ?to - waypoint)

)

(:functions (distance ?wp1 ?wp2 - waypoint) (cov) (dFactor)
(finalTrace) (relativeD) (counter) (predict_covariance)
(update_covariance)
)
;; relativeD- a variable to store the distance between wps,
;; dFactor- distance factor, to see how many times
;; kalman prediction to be done
;; cov is the initial covarianc trace,
;; finalTrace- the required trace upon reaching the goal state
;; Move between any two waypoints, along the straight line
;; between the two waypoints

19

3.1 Domain and Problem Description

(:action goto_waypoint
:parameters (?r - robot ?from ?to - waypoint)
:precondition (and (robot_at ?r ?from) (observe)
(not(robot_at ?r ?to)) (not (visited ?to)))
:effect (and (not (robot_at ?r ?from))

(assign (relativeD) (distance ?from ?to))
(moving ?r ?to)
(not (observe))
(assign (counter) 0)
(increase (predict_covariance) 0)
(increase (update_covariance) 0)
)

)

(:action reached
:parameters(?r - robot ?to - waypoint)
:precondition(and (moving ?r ?to) (<= (relativeD) 0))
:effect(and (robot_at ?r ?to) (visited ?to)
(not (moving ?r ?to)))

)

(:event belief_predict
;;:parameters(?r - robot ?to - waypoint)
:parameters()
:precondition(and (= (counter) 1))
:effect (and

(increase (cov) (predict_covariance))
(assign (counter) 0)

)
)

(:action belief_update
:parameters (?r - robot ?to - waypoint)
:precondition (and (robot_at ?r ?to) (not(observe)))
:effect (and

(decrease (cov) (update_covariance))
(observe)
)

)

20

3.1 Domain and Problem Description

;; to calculate the number of prediction steps needed
(:process odometry
:parameters()
:precondition (and (> (relativeD) (-dFactor)))
:effect (and (decrease (relativeD) (* #t (dFactor)))
(increase (counter) (* #t 1))

)
)
)

3.1.1.2 Initial Problem Declaration

(define (problem landmark_prb)
(:domain landmark)

(:objects
kenny - robot
wp0 wp1 wp2 wp3 wp4 wp5 - waypoint

)
(:init
(= (distance wp0 wp1) 4)
(= (distance wp0 wp2) 3)
(= (distance wp0 wp3) 2.82843)
(= (distance wp0 wp4) 6.32456)
(= (distance wp0 wp5) 5.09902)
(= (distance wp1 wp0) 4)
(= (distance wp1 wp2) 5)
(= (distance wp1 wp3) 2.82843)
(= (distance wp1 wp4) 8.48528)
(= (distance wp1 wp5) 5.83095)
(= (distance wp2 wp0) 3)
(= (distance wp2 wp1) 5)
(= (distance wp2 wp3) 2.23607)
(= (distance wp2 wp4) 3.60555)
(= (distance wp2 wp5) 2.23607)
(= (distance wp3 wp0) 2.82843)
(= (distance wp3 wp1) 2.82843)
(= (distance wp3 wp2) 2.23607)
(= (distance wp3 wp4) 5.65685)
(= (distance wp3 wp5) 3.16228)
(= (distance wp4 wp0) 6.32456)

21

3.1 Domain and Problem Description

(= (distance wp4 wp1) 8.48528)
(= (distance wp4 wp2) 3.60555)
(= (distance wp4 wp3) 5.65685)
(= (distance wp4 wp5) 3.16228)
(= (distance wp5 wp0) 5.09902)
(= (distance wp5 wp1) 5.83095)
(= (distance wp5 wp2) 2.23607)
(= (distance wp5 wp3) 3.16228)
(= (distance wp5 wp4) 3.16228)
(robot_at kenny wp0)
(= (cov) 1.02)
(= (relativeD) 0)
(= (finalTrace) 0.2)
(= (dFactor) 0.5)
(observe)
(= (predict_covariance) 1.02)
(= (update_covariance) 1.02)
)
(:goal (and (robot_at kenny wp5) (< (cov) finalTrace)))
(:metric minimize(total-time))

)

Although the predictions and updates were being handled for external eval-
uation, in correspondence to how an EKF behaves, the declaration is relaxed
because predict is handled as event which triggers at each time_passing event
while update is an action called only after reaching a waypoint. This is only
partly correct localization as update is not as frequent as predict, and hence ren-
ders the plan to be comparatively relaxed than an actual EKF implementation.
To improve upon the precision, both predict and update should be changed to
events handled explicitly by the external advisor. For details regarding the algo-
rithm refer to 3.3. The change made in domain file compared to its predecessor
is one event belief_update which does automatic predict and update of the
covariance. A snippet of the change made can be seen in 3.1.1.3.

3.1.1.3 Predict and Update Event Domain Declaration

(:action goto_waypoint
:parameters (?r - robot ?from ?to - waypoint)
:precondition (and (robot_at ?r ?from) (observe)
(not(robot_at ?r ?to)) (not (visited ?to)))
:effect (and (not (robot_at ?r ?from))

22

3.1 Domain and Problem Description

(assign (relativeD) (distance ?from ?to))
(moving ?r ?to)
(not (observe))
(assign (counter) 0)
(assign (update_covariance) 0)
)

)

(:event belief_update
;;:parameters(?r - robot ?to - waypoint)
:parameters()
:precondition(and (> (counter) 0))
:effect (and

(assign (cov) (update_covariance))
(assign (counter) 0)

)
)

To make the planner more robust, we introduce the concept of connected way-
points based on the sampling done by RRT algorithm 3.13. The idea is to connect
waypoints such that only those within certain radius are considered for connection
and the path with least cost to robot’s initial base is connected. This expands
the waypoint map in a tree fashion covering more surface area while maintain-
ing complexity of least cost trajectory finding. As opposed to PRM approach in
which all waypoints within a connecting distance and clear line of sight are con-
sidered as connected, RRT only connects waypoints which creates least cost path,
hence reducing computation complexity. Since ROSPlan automatically generates
Problem file based on pre-defined ROSPlan services, declaring certain variables
in domain file become essential. For this reason, we also introduce covariance
as a type and use (lessthan ?c ?f - covariance) as predicate which allows us to
define the goal covariance and final trace. Compared to previous problem, idea
for endpoint as goal waypoint has been introduced which is the final end point
which can be pre-defined or randomly generated by the RRT algorithm 3.3.2.

3.1.1.4 Domain Declaration with RRT

(define (domain landmark)

23

3.1 Domain and Problem Description

(:requirements :typing :durative-actions :fluents :time :strips :
↪→ disjunctive-preconditions :durative-actions

:negative-preconditions :timed-initial-literals)

(:types
waypoint
robot
covariance

)

(:predicates
(robot_at ?r - robot ?wp - waypoint)
(visited ?wp - waypoint)
(observe)
(moving ?r - robot ?to - waypoint)
(connected ?from ?to - waypoint)
(lessthan ?c ?f - covariance)

)

(:functions (distance ?wp1 ?wp2 - waypoint) (cov) (counter)
(update_covariance) (predict_covariance) (relativeD) (dFactor)

(finalTrace)
)

(:action goto_waypoint
:parameters (?r - robot ?from ?to - waypoint)
:precondition (and (robot_at ?r ?from) (observe)
(not(robot_at ?r ?to)) (not (visited ?to))
(connected ?from ?to))
:effect (and (not (robot_at ?r ?from))

(assign (relativeD) (distance ?from ?to))
(moving ?r ?to)
(not (observe))
(assign (counter) 0)
(increase (update_covariance) 0)
(increase (predict_covariance) 0)
)

)

(:action reached

24

3.1 Domain and Problem Description

:parameters(?r - robot ?to - waypoint)
:precondition(and (moving ?r ?to) (<= (relativeD) 0))
:effect(and (robot_at ?r ?to) (visited ?to)
(not (moving ?r ?to)) (observe))

)

(:event belief_update
;;:parameters(?r - robot ?to - waypoint)
:parameters()
:precondition(and (> (counter) 0))
:effect (and

(assign (cov) (update_covariance))
(assign (counter) 0)

)
)

;; to calculate the number of prediction steps needed
(:process odometry
:parameters()
:precondition (and (> (relativeD) (-dFactor)))
:effect (and (decrease (relativeD) (* #t (dFactor)))
(increase (counter) (* #t 1))

)
)
)

3.1.1.5 Automatic Problem Declaration from ROSPlan with RRT

(define (problem landmark_task)
(:domain landmark)
(:objects

dummy1 dummy2 - covariance
kenny - robot
endpoint wp0 wp1 wp2 wp3... wp29 - waypoint

)
(:init

(connected endpoint wp0)...
(connected endpoint wp10)
(connected wp0 wp1)...

25

3.2 Software Architecture

(connected wp0 endpoint)
(connected wp1 wp0)...
(connected wp1 wp18)
(connected wp10 wp8)
(connected wp10 endpoint)
(connected wp11 wp0)...
.......
(connected wp9 wp23)
(observe)
(robot_at kenny wp0)
(= (cov) 1.22)
(= (dFactor) 0.5)
(= (distance endpoint wp0) 2.56223)....
(= (distance endpoint wp8) 3.45579)
(= (distance wp0 wp1) 4.28077).....
(= (distance wp0 endpoint) 2.56223)
(= (distance wp1 wp0) 4.28077)....
(= (distance wp1 wp18) 2.90259)
(= (distance wp10 wp8) 2.77308)....

......
(= (distance wp9 wp23) 2.88531)
(= (finalTrace) 0.5)
(= (predict_covariance) 0)
(= (relativeD) 0)
(= (update_covariance) 1.22)

)
(:goal (and

(robot_at kenny endpoint)
(< (cov) finalTrace)

))
(:metric minimize(total-time)))

3.2 Software Architecture
For our TAMP approach we use the PDDL+ based DiNo planner to describe our
domain. Hence, it is essential to first understand the DiNo planner framework to
understand our proposed modifications. Amalgamating different softwares, our
framework uses DiNo with External Advisor. Since DiNo itself is an upgrade
of UPMurphi, in section 3.2.1, we give an in-depth over-view on the software

26

3.2 Software Architecture

architecture of UPMurphi. In addition, in section 3.2.2 we explain how DiNo is
merged with our External Advisor for precise state prediction and plan generation.
Finally, we give an overview of our External Advisor in 3.2.3. It is to be noted
that we use the term External Advisor to refer to the specialized heuristic aiding
semantic attachments that is used in this thesis.

3.2.1 Planner Framework

The need of discretization is aptly emphasized based on our domain and problem
structure. This discretization also defines the predict and update phase, which
is critical part of our plan formulation. Hence, the most essential portion of
the chosen planner is it’s handling of the discretization. Furthermore, successful
heuristic calculation is also essential for devising an admissible plan. Below we
discuss the key features of DiNo in these regards.

The time-passing action plays an important role as it propagates the search
in the discretized time-line. During the normal expansion of the Staged Relaxed
Plan Graph (SRPG), the time-passing is one of the δ-actions and is applied at
each fact layer. Time-passing can be recognized as helpful action [11] when its
effects achieve some goal conditions (or intermediate goal facts). However, if at
a time t, no helpful actions are available to the planner, time-passing is assigned
highest priority and used as helpful action. This allows the search to quickly
manage states at time t where no Happenings of interest are likely to occur.

Innovating from the UPMurphi which expands at each time step, even during
idle periods, DiNo’s SRPG+ identifies time-passing as a helpful action during
idle periods and thus advances time, mitigating the state explosions. An example
of the state expansion between the two planners is in figure 3.1. The domain
explored here is Solar Rover domain [33]. The continuous effects and processes
are handled such that at each action layer, the numeric variables’ upper and lower
bound are updated based on the time-step functions used in the discretization to
approximate the continuous dynamics of the domain. Events are then checked
immediately after the process and their effects are relaxed as for the instantaneous
action.

The DiNo algorithm has been divided into following sections

1. Explore_bfs()
Uses SRPG for calculating the heuristics based on the rules, makes the list of
the state and transition based on the rules (in present case, the approximate
heuristics)

2. Build_Dynamics()
Essentially a graph manager. Uses the list to do model checking. Based
on the list of states and transition, there are two type of memory options

27

3.2 Software Architecture

Figure 3.1: Branching of search trees in (Blues are explored, oranges are visited.
Red edges correspond to helpful actions)

(MemGraphManager, DiskGraphManager). In the graph form, states are
nodes and edges are transition which contains [from, to , weight and dura-
tion]

3. Find_Paths()
Based on metric and distance formula for each edge, creates a list of chosen
edges

4. Collect_Plans()
There is a subroutine here (Build_Plan_From) which finds a list of con-
trollable plans using the chosen edges. Out of all controllable plans, one
with best values is chosen.

5. Output_Results()
Prints the result in PDDL+ format

6. Validate_Results()
Uses Val file for validating

28

3.2 Software Architecture

3.2.2 Planner Framework with Semantic Attachment

Since the current DiNo model only handles fixed limited changes and is not able
to do complex and precise computation based on the PDDL+ algorithms, we
introduce semantic attachments in DiNo for higher level approximations with
better error and precision handling. Specifically, we develop an external library
capable of handling modules such as extended kalman filter along with the domain
stated which enables a more realistic path planning for the SRPG+ framework
implemented in DiNo. The improvement here is shown by getting realistic and
approximate position of the robot with relation with surroundings and every
discretized time-step which helps SRPG+ framework to create new plans which
will be followed in real scenarios.

DiNo assumes static changes in the robot’s motion variables which does not
compensate for errors and misalignments that has already occurred during the
navigation. We implement EKF based variable updating which considers all
previous motions along with all the errors that have occurred in them and gives a
mean and covariance of the robot position within certain standard deviation. This
covariance is then passed to DiNo which will account in the heuristic calculation
of SRPG+.

Figure 3.2: Working of DiNo framework

29

3.2 Software Architecture

As show in figure 3.2, DiNo is integrated with the external parser to create
valid SRPG. Initially, an executable is generated which is based on given domain
and problem file.

The Breadth First Module, Explore_Bfs() is designed to check every possible
state from a given state with a set of satisfying rules. For doing so, it creates a
stack of all possible states sorted by heuristic value calculated for that state. It
calculates next state for the state with lowest heuristic value h_val and then adds
it to the stack. This process does not rely on following through same state until
it is completed, rather it saves and resumes search based on the layer of search
as breadth first search does. An essential part of the module has thus been to
save the states in each layer of the breadth first graph. State with unreachable
condition are given significantly high heuristic value and are not included in the
stack.

Since the standard DiNo planner does not handle variable change through
external call, the planner has been modified accordingly. First the system file,
ump_system.cpp/h A.1.1 which is responsible for handling all submodules like
Explore_Bfs() and SRPG is modified to load and call external solver if the ex-
ternal flag is given during runtime. This load and call is dynamic so it can work
with any external solver library passed by user during runtime and does not have
to be recompiled every time. This is to provide robustness to the system. Then
the current working state is passed to external solver which does the specified
heavy calculation and returns updated variables. To reflect these updates back
to DiNo’s working state, extra getter and setter methods are implemented in
UPMurphi files upm_util A.1.3, ump_state A.1.1, cppcode.cpp A.1.5. Argument
handling and integration is modified in upm_io A.1.4, ump_epilog A.1.6. Fur-
thermore, as variables for each domain file would be different, such extra variables
which should also be handled from external solver can be accessed and changed
directly from current state object in main system file upm_system A.1.1. Af-
ter that, DiNo uses the updated variables to calculate the next state of SRPG
instead of pre-defined variables. This changes the way each graph is built and
inadvertently changes the final plan while enabling higher precision calculations.

3.2.3 External Library

The function of the external library is to perform the computations for the non-
linear model and provide precise state estimate values which cannot be computed
by the standard PDDL based models. As computations are done based on the
robot’s current state and all the effecting previous states, the external module has
to incorporate the current state utilized by DiNo as well as all the related previous
states of the expanded branch. First, the state initialization is performed with
the same parameters in the domain and problem description. The initialization

30

3.3 Integration Architecture

parameter file also includes waypoint and landmark locations. Each action in the
domain is mapped to certain rules. These rules rely on fixed predicates, which are
then verified in the external library to make changes based on the actions fired.
In order to synchronize the state graph with DiNo which relies on a breadth first
search based on the heuristic value, the external library also saves corresponding
states which DiNo stores in its stack. When DiNo explores a state and loads its
values, the corresponding values used for calculation in external library is then
recalled from the external stack and values for next state is calculated. More
specifically, when a goto_waypoint action is passed, the external solver sets
robots known position as origin variables and initiates the EKF matrices. During
a time passing action between waypoints, EKF prediction and update is done
for robots new position and an estimated update covariance value is returned.
The EKF update only happens when robot is within observable distance and
direction of landmarks. Doing so will realistically update the Kalman gain for
robot and reduce error based on observable mapping of robot in world map. The
returned update covariance is set as covariance of state and used for heuristic
calculation in DiNo. We also notice some floating point precision error during
calculation which was affecting covariance calculations, and have implemented
checks to handle such cases.

Every successive movement induces change in covariance. Though out the
trajectory, the predict and update covariance affects the state and position of
the robot. Hence, when the robot is close to the target waypoint, an allowable
covariance error threshold must be determined. We use the covariance of posi-
tion as the allowable range. This is essential to avoid negative prediction. The
implementation can be observed in the git provided A.2.

3.3 Integration Architecture
Since ROS is a widely used and well developed framework that handles easy
integration of multiple sub-modules, we use the ROSPlan framework for handling
the communication to integrate all the different hierarchies of planning module.
For a complete planning, execution and feedback, ROSPlan architecture has been
shown in 3.4.

Since this thesis is more tilted towards the planning paradigm, we shall not be
discussing in-depth on the sensors, sensor parsing and the execution. In regard to
our framework integration architecture, figure 3.5 would be discussed further. The
domain and the problem files are stored in the knowledge base of the ROSPlan
architecture. Using ROS services, problem files can be generated. Knowledge
base server is used for storing values from domain file, problem file and map file.
Since the prerequisites for path-planning are the waypoints, both the options of

31

3.3 Integration Architecture

Figure 3.3: External Call Flowchart

32

3.3 Integration Architecture

Figure 3.4: ROSplan Framework

using either pre-defined waypoints or generating new ones should be available for
robustness and replication.

ROSPlan Framework allows the user to build node for communicating with
different planners. In our case the PDDL+ problem instance and the domain
is used for executing the planner. After the planner has completed generated a
meaningful plan, the plan parser service and the plan dispatcher service is used
which then interrogates the knowledge base to validate the plan and finally the
actions are applied on the platform. Based on the platform, the action is applied
and feedback is sent to the knowledge base. In case of plan failure, generation of
new problem file based on new knowledge of the environment is done. Otherwise,
next action from the stack is applied.

Detailing further on the used nodes, services and applied changes, the inte-
gration architecture can be submoduled as following:

3.3.1 Map Generation

Although no new modules have been added to the map generation, an essential
portion of the thesis is the communication between the nodes in the navigation
stack in ROS. As shown in figure 3.6, map_server and sensor sources commu-
nicate with each other for recovery behaviors as well as in concurrence to the
global planner in the system. The odometry data, sensor transforms as well as
localization module(AMCL) is necessary for the map generation and continuous
localization during execution phase.

SLAM (Simultaneous Localization and Mapping) is executed with ROS for
building a map for the environment with the robot. Localization takes place

33

3.3 Integration Architecture

Figure 3.5: ROSPlan Workflow

through the Adaptive Monte Carlo Localization (AMCL) using the data points
obtained through SLAM. AMCL is a probabilistic localization system for moving
robot in 2D space using particle filter to track the pose of the robot against
a known map. To illustrate, the model built in Gazebo 3.7, can be mapped
into a portable gray map (pgm) which is used later in the navigation stack.
An Occupancy Grid Mapping(OGM) is built from SLAM through sensor and
odometry readings. In correspondence, a YAML file is generated with information
regarding the mapping.

Next module 3.3.2 is highly influenced by the map generating module since
the mapping transformation from robot and environment is vital to successful
distributed waypoint generation as well as replication.

3.3.2 Waypoint Generation

We utilize task planning to synthesize a plan by performing search in the motion
space and hence require sufficient amount of waypoint distribution throughout
the map. Such a distribution is easily obtained by using the standard PRM or
RRT based sampling approaches. In our case, a caveat which concerns the task
planner is the number of waypoints. A large number of waypoints leads to state
space explosion and thereby increased planning time. This calls for a waypoint
generation strategy which on one hand should sample sufficient number of way-

34

3.3 Integration Architecture

Figure 3.6: Navigation stack

Figure 3.7: Playground world gazebo
map

Figure 3.8: Playground world rviz
map

points to synthesize satisfying plans, while on the other hand keep this number
minimal. Standard RRT based approaches sample waypoints that connects the
start and end locations. However, to reduce pose uncertainty it is to be ensured
that such connected paths have ample number of waypoints from which land-
marks can be observed. To facilitate this perception aware search we implement
an RRT based potential field approach to sample such relevant waypoints in the
environment.

35

3.3 Integration Architecture

3.3.2.1 RRT over PRM

First we generated PRM maps and observed the distribution as seen in figure 3.9.
We attempted to create 30 waypoints which was only partially successful, only
15 waypoints are created because of PRM’s limitation on generation algorithm
(number of attempts, number of waypoints, casting distance limitation). Also
it connects each waypoint with another within a certain distance, which creates
more connection than necessary and increases planner complexity. The generated
waypoints are not in closer proximity to the landmarks for successful observations.
Compared to PRM approach, when we deployed our RRT based motion planner,
it was successfully able to distribute all 30 waypoints throughout the map as seen
in figure 3.10. We can observe that the waypoints are closer to the landmarks
(denoted by red dots) due to the potential field algorithm in concurrence with the
RRT planner. The waypoints are not necessarily connected with each neighbor
but instead follow a least cost path to the root node which keeps complexity low
for the planner while increasing number of waypoints.

Furthermore, when an endpoint is either randomly generated or selected by
the user, the previously generated waypoints will be connected with the endpoint
based on proximity as shown in figure 3.11. The endpoint is marked with blue dot.
We tested the robustness of the algorithm in different environments. Successful
RRT generation and endpoint connection can be seen in the Corridor environment
in figure 3.12.

3.3.2.2 RRT based Potential Field Algorithm

ROSPlan has two nodes for planning server, SimpleRoadmapServer and RPRoadmapServer,
which is an essential part of our architecture. SimpleRoadmapServer is used for
loading pre-generated waypoints file into the knowledge base. Depending on the
distance between the waypoints and their visibility in the map, they are con-
nected as neighbors. It also allows user to add waypoints manually as a ROS
service. On the other hand, RPRoadmapServer by default creates a PRM based
waypoint using the connected distance, threshold and casting distance.

For our particular problem statement, an RRT based potential field approach
has been implemented. As input, the function takes landmark file and occupancy
map information 3.3. In general RRT generates a random point in the grid,
finds the closest available node and does an epsilon expansion towards the node
provided that the connection is visible. For our alterations, firstly, the waypoints
can only follow least cost path to the root node and each waypoint should be
between minimum and connecting distance to a neighbor. The need of potential
field is to have waypoints close to each landmark while satisfying first rule of
least cost path. This insures a higher probability that all landmarks are visited

36

3.3 Integration Architecture

Figure 3.9: PRM with 30 waypoints

Figure 3.10: RRT with 30 waypoints

by at least one root that connects to the end goal. For the potential field to work,
there are two zones that respectively pulls and nullifies the semaphore for next
waypoint close to the landmark. Once a waypoint falls into the attractive zone of
potential field, the successive waypoint is pulled closer into the second zone. After
that the landmark’s potential field is set as negative and other waypoints will not
be generated within that field. Finally the end-point is randomly generated or
generated at a fixed point as per user selection 3.13. All the generated waypoints
and landmarks are then pushed to the knowledge base as well as the visualization
node. The connected edges and their distances are extracted and pushed to the
knowledge base.

Contrary to existing SimpleRoadMapServer, we built another module to load
the already built RRT waypoints in RPRoadmapServer. This LoadRRT module
loads previously generated waypoints and passes it to the knowledge base instead
of creating new RRT waypoints. It inputs waypoint file and does waypoint trans-
formations using the map parameters loaded. Hence OGM and map_server play

37

3.3 Integration Architecture

Figure 3.11: Endpoint connection with generated RRT

Figure 3.12: Endpoint connection with generated RRT in Corridor environment
with 40 waypoints

important role in loading a generated RRT file. The RRT algorithm implemen-
tation is found at A.3.6.

38

3.3 Integration Architecture

Figure 3.13: RRT implemented

3.3.3 Problem Generator

Once the domain is parsed and knowledge base has been updated with waypoint
and landmark generation from previous step, the problem generator node is called
upon. Note that we can choose to not create problem.pddl file through this node
and just use user defined problem file. The service first reads any user input for the
problem parameter though the knowledge base such as goal, initial values, literals.
Then the connected waypoints and their distance is loaded from knowledge base
and put in the problem file in pddl format. Since the original problem generator

39

3.3 Integration Architecture

was not designed to handle goal with complex clauses as well as metric, we develop
our own module to handle these cases and direct the readers to Appendix A.3.1
for the link to git.

3.3.4 Plan and Reference Trajectory Generation

Once problem.pddl file is generated the call to the planner framework, in our
case DiNo, is made. DiNo takes the domain and problem, waypoints, landmarks,
external advisor and other specialized planning parameters as input. It internally
handles the plan generation and outputs a plan.pddl file which contains the way-
points robot has to follow. Furthermore it also generates a reference trajectory
which is generated by the external advisor during planning section.

3.3.5 DiNo to Esterel Plan Generator

After plan.pddl is generated, plan parser node is called which takes plans in
pddl format as input and parses to extract the waypoint which is updated in the
knowledge base. Note that the pose of the waypoint is not specified in any .pddl
file but it is taken implicitly from the knowledge base based on its name. Then a
plan is saved in Esterel format which can be later used for execution as an option.
The parser implementation is available at A.3.4.

3.3.6 Default Plan Execution and Trajectory generation

The global navigation is used to create paths for a goal in the map or at a far-off
distance. The local navigation is used to create paths in the nearby distances
and avoid obstacles, for example, a square window of 4x4 meters around the
robot. Once the plan is updated in knowledge base, the planning server side
is called. This takes an action from the knowledge base stack and sends it to
the /move_base node. The /move_base node handles the robot movement and
provides feedback to ROSPlan on whether the action succeeded or failed. If the
action is successful, then next action from the stack is passed until the end goal
is reached. Simultaneously, the node provides the position and velocity of robot
during the action which is saved as actual trajectory. The implemented module
can be accessed from A.3.2, A.3.3, A.3.5.

40

Chapter 4

Experiments and Results

To validate our DiNo module with EKF and the upgrades made with external
advisor, we implement a toy example, populating an open environment with a
set of waypoints wp and a set of landmarks l. This domain helps to fathom
the underlying concepts of our TAMP approach and is described in Section 4.1.
We also evaluate our approach in simple yet realistic experiments in the Gazebo
simulator. Two different environments are considered, (1) the default playground
world environment of ROSPlan with slight modification on the occupancy map
resolution and (2) a corridor environment as seen in Figure 4.9.

4.1 Abstract Example
For the simulations, we use five waypoints, three landmarks and a goal waypoint.
DiNo provides a verbose mode where the numerical values of the variables can
be closely observed. For the two different domain declarations, we observe the
resulting changes in covariance and discuss the different test cases below.

4.1.1 action and event for Belief Updates

Corresponding to the domain description in 3.1.1.1, the action belief_update
is performed only when robot has reached close proximity to the landmark. The
environment is shown in figure 4.1. As observed, from 4.2, we see the covariance
of the robot decreases only when the landmark is visited. The plan for this
action is to visit wp2 from wp0 and then wp5 from wp2. Hence, we see two sharp
decrease in the covariance of the system when these waypoints (landmarks are
close to waypoints) are reached. Furthermore, this approach fails when multiple
landmarks are within range as the external library for this domain supports only
single measurement updates. The landmark and waypoint locations are detailed

41

4.1 Abstract Example

Figure 4.1: Initial test map

in A.8, A.7.

4.1.2 Single event Based Belief Updates

For a more realistic scenario, we upgrade the module to perform predict and then
look for landmarks that lie within the sensor range. For each landmark within
the range, the posterior belief is calculated by simulating the future observation
for each corresponding landmarks. With reference to domain 3.1.1.3, we see that
both predict and the posterior beliefs are evaluated using a single belief_update
event. The algorithm used is summarized in 1. We closely observe the value of
the covariance during the progression of the plan as shown in figure 4.3. Given
the closeness of the waypoints and landmarks, the plan generated for the robot
is to directly move from wp0 to wp5. The landmark and waypoint locations are
given in Appendix A.8, A.7.

42

4.2 ROSPlan Simulation

Figure 4.2: Covariance reduction with double update

4.1.3 Belief Update with RRT

The problem and domain description for this particular case has been discussed
in A.4 and 3.1.1.4. The associated waypoints and landmarks for this test case
are given in A.5 and A.6. We see that the covariance reduces realistically due to
the separation of the landmarks being wide enough and the waypoints generated
being closer to each other, which is a result of the RRT algorithm. The map
associated with the generated covariance is shown in figure 3.11.

4.2 ROSPlan Simulation
In this section we discuss the synthetic simulations in Gazebo to further validate
our TAMP algorithm. It is to be noted that for each given landmark we consider
a potential field originating at its center. With the inclusion of the occupancy
grid obtained during the mapping and the potential field, the RRT is constructed
maintaining a closer proximity to the landmarks. The computational complex-
ity is directly dependent on the number of waypoints m generated. The action
goto_waypoint is triggered only if two waypoints are connected. Hence in the
worst case, we have m(m − 1) possibilities for encoding (connected ?from ?to).
Similarly we have m each for (robot_at ?r ?from), (robot_at ?r ?to), (visited

43

4.2 ROSPlan Simulation

?to) and (moving ?r ?to). Ignoring other unary encodings, the total states to
be explored is 2m

2+3m. The heuristic based search of the DiNo planner, reduces
this state space explosion significantly. Furthermore, due to our potential field
based RRT sampling, we are able to prune unwanted state expansions by gen-
erate parsimoniously connected waypoints which are sufficient for synthesizing
satisfying plans. The visualization and initialization changes can be observed at
A.3.7,A.3.8, A.3.9, and A.3.10.

Figure 4.3: Covariance reduction with constant update

44

4.2 ROSPlan Simulation

Figure 4.4: Covariance reduction with constant update and RRT

4.2.1 Playground Environment

Here we use the default playground world provided by the ROSPlan framework.
The world consists of four different obstacles around the robot as shown in the
figure 3.8. A process discretization ∆ = 1 , distance factor of dFactor = 0.5 and
a temporal horizon of T = 12 is used. Using a discretized model and a finite-time
horizon ensures a finite number of states in the search for a solution. The desired
goal covariance is also set to finalTrace = 0.5 in the problem file. In three
of our test cases environment the goal is selected manually to reflect different
conditions. In the first case, the goal is selected to be in direct line of sight
from robot and in close proximity. In Case 2 and 3, the goal is hidden behind
an obstacle and at a reasonable distance from the robot’s origin. For last test
case, we used an automatic end-point generator node for robust goal selection.
This generates a random end-point within the map and connects it with valid
waypoints in proximity.

Case 1: In this case the endpoint is in direct line of sight from the starting
position (center). For a simple test case, we want the finalTrace for this case to
be less than 0.5. Given such simple case, the robot follows a straight path to the
landmark as seen in Figure 4.6a. Furthermore, the final trace for the generated
path is 0.311644. A total of 32 states were explored for the given state. The plan
was computed in 0.86 seconds. Hence the generated planner and ROS trajectory
follow a similar path as can be seen in 4.7a. We can observe similar progression

45

4.2 ROSPlan Simulation

in the position, the generated angle follows a different trajectory because of the
velocity model used in ROS planner.

Case 2: Since the endpoint is not in line of sight, the path that planner chooses
has multiple connected options to choose from. The optimal path selected is using
one connection which is way point right above the center (bookcase) 4.6b. For
the given case 37 states were explored in 2.38 seconds and with final covariance
of 0.301713. The planner and ROS trajectory for the case is pictured in 4.7b.
Having similar changes in the x and y position, the abrupt changes in the orien-
tation is handled better in ROS. While the angular position in both Case 1 and
this case, have abrupt change in theta, ROS follows a smoother velocity model.

Case 3: In this simulation, the waypoints are more spread apart than Case
2. So the optimal path consists of two connections 4.6c. We notice it has one
connection path as well but they are further away from landmarks so the final
covariance from those paths are higher than the path with two connections. Given
the constraint, a total of 27406 states were explored in 146.52 seconds resulting
in final covariance of 0.453272. The ROS and planner trajectory follow similar
pattern with smoother features in ROS.

Case 4: Case 4 is an ideal test case where end point is generated in direct
line of sight from the starting point. Contrary to Case 1, in this test case, the
automatic end-point generation has been used. An interesting observation is the
automatic generation of waypoint for RRT. Our algorithm uses potential field
to bring new waypoints closer to landmark after the first random waypoint is
generated within the field of the landmark. In this case, we can observe that the
first waypoint generated is right next to the landmark, this may create problem
of collision depending on the nature of the obstacle and occupancy it hold. In
the given case 25 states were explored with 1.2 seconds of computational time
and 0.244359 covariance. Similar to Case 1, the direct line of sight makes the
planning faster.

We can see the change in covariance in the planner from Figure 4.5, in all the
four test cases, the initial position of the robot and the chosen trajectory updates
the covariance and reduces it for faster approach to goal. Given the plan length
and trajectory length of Case 3, we can observe a higher final covariance.

46

4.2 ROSPlan Simulation

Figure 4.5: Covariance evolution for different test cases of the Playground world.

47

4.2 ROSPlan Simulation

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 4.6: Playground test case.

48

4.2 ROSPlan Simulation

(a) Case 1

(b) Case 2

Figure 4.7: Playground trajectory test case.

49

4.2 ROSPlan Simulation

(a) Case 3

(b) Case 4

Figure 4.8: Playground trajectory test case.

50

4.2 ROSPlan Simulation

4.2.2 Corridor Environment

Starting from the initial waypoint (s in figure), turtlebot needs to reach near the
only plug point or the goal waypoint (g in figure) to recharge the batteries. The
turtlebot is initially oriented towards g. Due to the short length of the charg-
ing cable, given the mean goal pose, there is a bound on the maximum pose
uncertainty the robot can afford. The cubes marked 1-4 are the landmarks in
environment. The slam_gmapping ROS package is used to build the environ-
ment map. The resulting map of the environment is shown in Figure 4.10a. The
turtlebot with its laser scanner can be seen facing the goal waypoint marked in
blue.

Figure 4.9: Corridor environment in Gazebo.

In the remainder of this section we discuss a number of test cases performed
with the same initial waypoint and goal waypoint as shown in Figure 4.9. The
initial variance in x, y, θ are 0.6m2, 0.6m2 and 0.02 rad respectively, giving (Σ0) =
1.22. PDDL+ process discretization of ∆ = 1 and a temporal horizon of T = 20
is used but with different values of η. Motion discretization factor dFactor = 1,
giving δtransk = 1. Performing the belief updates at each δtransk helps in pruning
the nearby waypoints and thereby reducing the state space explosion. However,
in the difficult regions where one cannot afford to prune close-by waypoints, the
updates are performed upon reaching each of these waypoints. Unless otherwise
mentioned, the number of waypoints for each case m = 40. The different test
cases are detailed below.

Case 1: For this case η = 0.3. The plan generated is shown via the red path
in Figure 4.10b, starting from initial state to the goal state. This plan is quite
expected due to the landmark rich nature of the path and the tight bound on the
final trace.

51

4.2 ROSPlan Simulation

(a) Initial configuration (b) Case 1

(c) Case 2 (d) Case 3

(e) Case 4 (f) Case 5

Figure 4.10: Initial configuration and the trajectories for the different test cases.

Case 2-5: For Case 2 η = 0.6. The plan generated is the one following the
red path shown in Figure 4.10c. Case 3 has the same η = 0.6, however, the path
followed is along the one with 3 landmarks (Figure 4.10d). This is due to the

52

4.2 ROSPlan Simulation

(g) Case 6 (h) Case 7

(i) Case 8 (j) Case 9

(k) Case 10

Figure 4.10: Trajectories for the remaining test cases.

randomness of the potential field based RRT motion planner and the bound on
the trace being less tight. Since the objective function requires the planning time
to be minimized, the planner returns the path which minimizes the makespan

53

4.2 ROSPlan Simulation

Test cases States expanded Plan time (s)
Case 1 6184 116.62
Case 2 6934 156.62
Case 3 33769 744.36
Case 4 2710 60.64
Case 5 4847 99.74
Case 6 7646 190.44
Case 7 7289 143.04
Case 8 56544 1119.00
Case 9 28595 684.60
Case 10 388 4.60

Table 4.1: Different test case with number of states expanded in each case and
the corresponding planning time in seconds.

which in turn is determined by the waypoint locations in the environment. As
seen in Table 4.1, the states expanded and the planning time is much larger than
in Case 2 (around 4.8 times). This is due to the large number of connected
waypoints. Case 4 has η = 0.6 and the path followed (see Figure 4.10e) is similar
to the one in Case 3. However, as evident from Figures 4.10e, in this case the
number of connected waypoint is much less, resulting in a much lesser planning
time (see Table 4.1). Case 5 (see Figure 4.10f) is similar to the Case 2 but with
differences in the number of connected waypoints. This is reflected in the states
expanded and the planning times as seen in Table 4.1.

Case 6-8: Cases 6, 7 and 8 have η = 0.9. However as discussed previously
the sampling of waypoints affects the plan as can be seen in Figures 4.10g- 4.10i.
In Figure 4.10g the plan generated is such that the trajectory upon reaching a
waypoint near the goal is extended to a waypoint near landmark 4, from which
it can be observed. Case 8 has the highest number of connected waypoints and
this is reflected in the corresponding row in Table 4.1.

Case 9-10: Case 9 is similar to Case 1 but with higher number of connected
waypoints. In Case 10, m = 20 and η = 0.6. The reduction in waypoint signif-
icantly reduces the state space explosion and the planning time, as can be seen
in the last row of Table 4.1. However it can be seen in Figure 4.10k that the
upper path has no waypoints sampled. Though it is true that for all the cases
discussed so far this doesn’t cause any alarm, in general a lesser number of way-
points might result in no plans being produced, even though there exists one.
For example, changing the starting or the goal location in our experiments can
lead to a path via landmark 1. Finding such a minimum number of waypoints is
another planning problem by itself.

54

4.3 Performance Analysis

Furthermore, test cases have been carried out to check the trajectory between
the planner and the ROS execution. The trajectory generated by the planner
follows the odometry model in EKF while the ROSPlan uses DWA planner [42]
for generating trajectory. The trajectory model followed by the ROSPlan is a
velocity model. It can be observed in Case 1 4.11a, the position of the robot
follow similar trajectory in x and y direction. However we can see a sharp change
in the theta parameter. The same can be observed in Case 3 4.12a and Case
8 4.14b. In all the three cases, the robot has taken a sharp 90 degree turn to go
to the goal. It can be observed that there is a slight jerk in the ROS trajectory,
this is because the robot is trying to re-align its position based on SLAM and
it is acceptable to have certain degree of error and correction in such realistic
mapping.

In all cases, we can see a smoother trajectory in the ROS section because of
the higher time-step and better planner. The local planner used by ROSPlan
reduces the search space to the dynamic window, which consists of the velocities
reachable within a short interval of time. In Case 2 4.11b, we see that a sharp
change in consecutive orientation value because of the shift in direction from
waypoint lower than the endpoint, and back to the endpoint. In such a case,
the local planner is intelligently correcting such errors and building a smoother
trajectory.

The similarity of our planner’s trajectory with the trajectory from ROS further
ascertains that the odometry model we assumed while planning the path is close
to realistic velocity model and that our plans are valid. The ROS trajectory takes
a longer time because of the AMCL algorithm used simultaneously with the local
planner for visual feedback. In case of corridor world, the particle filter used is
not able to differentiate the repetitive pattern of walls properly when in a forward
motion 3.6.

We can see the change in covariance in the planner from Figure 4.16. Since
different complexity of problem and plan has been tested for the corridor world,
the generated pattern of covariance are in all diverse. We see that in all those
cases where robot almost reaches way point but has not passed thorough any
landmark diverts to a close by landmark to reduce covariance. In these cases,
covariance rises higher than 3 until it visits a landmark which reduces it below
the required threshold.

4.3 Performance Analysis
To analyze the performance based on the temporal planning horizon and the
PDDL+ process discretization, we perform different simulations using Case1 in
Section 4.2 as our base case. We use different discretization ∆ and time horizon T

55

4.3 Performance Analysis

and analyze the states explored, computation/plan time t and the goal covariance
trace (Σg).

∆ T States expanded t (s) (Σg)
0.5 20 47500 1231.60 0.076
0.5 25 112601 N/A N/A
0.5 30 112601 N/A N/A
0.5 35 112601 N/A N/A
1.0 20 6184 121.88 0.153
1.0 25 12788 249.14 0.156
1.0 30 23533 566.44 0.143
1.0 35 41682 1092.96 0.181
2.0 20 750 17.56 0.267
2.0 25 1290 39.66 0.273
2.0 30 995 37.98 0.290
2.0 35 967 47.78 0.255

Table 4.2: Performance parameters for different temporal planning horizons and
PDDL+ process discretization.

From table 4.2 we can observe that the planning time is inversely proportional
to the discretization ∆. This is because we perform belief updates based on
δtransk = ∆ ∗ dFactor. Since dFactor = 1, the number of updates is directly
proportional to Delta, thereby increasing the states expanded and hence the
plan time. It is seen that the temporal horizon and total states searched are
correlated, directly affecting the total plan time. It can be observed from table
4.2 that for a longer temporal horizon T and a larger ∆, the goal condition
is satisfied by expanding fewer states. Larger the value of T , the more deeper
SRPG is built resulting in better heuristic. However, for 2 given waypoints,
lower value of ∆ implies additional belief updates, leading to more states being
expanded. Conversely, lower discretization and a larger time horizon will not
result in successful plans. Longer T can lead to more states being expanded
and a large ∆ can lead to unvalidated plans. Hence an efficient plan requires a
trade-off between the two.

56

4.3 Performance Analysis

(a) Case 1

(b) Case 2

Figure 4.11: Trajectory generated by the planner and trajectory executed by
ROSPlan.

57

4.3 Performance Analysis

(a) Case 3

(b) Case 4

Figure 4.12: Trajectory generated by the planner and trajectory executed by
ROSPlan.

58

4.3 Performance Analysis

(a) Case 5

(b) Case 6

Figure 4.13: Trajectory generated by the planner and trajectory executed by
ROSPlan.

59

4.3 Performance Analysis

(a) Case 7

(b) Case 8

Figure 4.14: Trajectory generated by the planner and trajectory executed by
ROSPlan.

60

4.3 Performance Analysis

(a) Case 9

(b) Case 10

Figure 4.15: Trajectory generated by the planner and trajectory executed by
ROSPlan.

61

4.3 Performance Analysis

Figure 4.16: Covariance for corridor case 1 - 10

62

Chapter 5

Conclusion and Future Work

We have developed a combined Task and Motion Planner capable of reasoning
in belief space that produces a viable plan. Using a high level PDDL+ planning
framework we are able to work in discrete and continuous non-linear systems,
handling the predicates and rules defined in each domain. Furthermore we inte-
grated an external library to perform semantic attachments that computes the
complex non-linear state space evolution, generating a staged relaxed plan graph
utilizing breadth first search module to thoroughly search for optimal goal.

Expressive power of PDDL+ combined with heuristic base semantic attach-
ments simulate the belief evolutions given an action sequence and the correspond-
ing expected future observations. The underlying methodology of the hybrid
planner has been discussed, validating the approach using realistic synthetic sim-
ulations in Gazebo. For the probabilistic completeness, we have implemented a
potential field based RRT algorithm for efficient waypoint sampling. This method
quantitatively produced more robust distribution of waypoints while reducing
computational complexity by making only necessary waypoints connected. It
also considered distributions around landmark through potential field which evi-
dently helped in reducing system uncertainties and giving optimum plan. Our use
of ROSPlan for seamless integration of planner, semantic attachment, problem
generation and execution was also successful in completing the task for different
test cases in a single command. This also gives us an option to plug any other
planner or executor easily without affecting rest of the framework.

While this is a novel work, there is scope for further improvements with mul-
tiple upgrades in all the software and algorithmic sections. To being with, the
current version of planner can be improved to include metric covariance, so that
an option to get best plan with least covariance in concurrence with time can
be generated. To utilize the model checking feature of the planner, advanced
algorithm for multi-robot simulation can be implemented.

Similarly, the RRT model with potential field currently takes the center of an

63

object as the origin and perceives a potential field around it. However, contrary
to current implementation, the field magnitude should have peaks only around
the view points from which landmarks can be observed facilitating a perception-
aware model. This can be performed in concurrence with SLAM for better map
building.

In our test cases we use the default AMCL for navigation. The particle filter
used in AMCL can be modified according to the environment or the module can be
improved with better sensors for localization and mapping. One of the problems
of AMCL in our algorithm is its limitation to 2D mapping. For multi-robot
heterogeneous system, a 3D reconstruction of environment is essential. Hence,
navigation module should be changed to a 3D based SLAM type module.

The external module still relies on the odometry model for mobile robot to
perform localization using EKF estimates. This is not robust to handle the
physical limitation of the mobile robot. A better alternative would be to use
velocity model of the robot similar to the one used by ROSPlan framework which
takes into account the dynamics of the robot’s motion for better plan calculation.

64

Bibliography

[1] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin
Ram, Manuela Veloso, Daniel Weld, and David Wilkins. PDDL- The Plan-
ning Domain Definition Language. In AIPS-98 Planning Competition Com-
mittee, 1998. 1, 2, 8

[2] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart
Russell, and Pieter Abbeel. Combined task and motion planning through an
extensible planner-independent interface layer. In Robotics and Automation
(ICRA), IEEE International Conference on, pages 639–646. IEEE, 2014. 1,
7, 15

[3] Stéphane Cambon, Rachid Alami, and Fabien Gravot. A hybrid approach to
intricate motion, manipulation and task planning. The International Journal
of Robotics Research, 28(1):104–126, 2009. 1, 7

[4] Leslie P Kaelbling and Tomás Lozano-Pérez. Integrated robot task and
motion planning in the now. Technical Report 2012-018, Computer Science
and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
2012. 1, 7

[5] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg,
Michael Brenner, and Bernhard Nebel. Semantic Attachments for Domain-
Independent Planning Systems. In Towards Service Robots for Everyday
Environments, pages 99–115. Springer Berlin Heidelberg, 2012. 1, 9

[6] Marc Toussaint. Logic-geometric programming: An optimization-based ap-
proach to combined task and motion planning. In Twenty-Fourth Interna-
tional Joint Conference on Artificial Intelligence, 2015. 1, 7

[7] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and Ly-
dia E Kavraki. An incremental constraint-based framework for task
and motion planning. The International Journal of Robotics Research,
0(0):0278364918761570, 0. 1, 7

65

BIBLIOGRAPHY

[8] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial intelli-
gence, 101(1-2):99–134, 1998. 2

[9] SJ Russell and P Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition, 2002. 2

[10] Richard E Fikes and Nils J Nilsson. Strips: A new approach to the appli-
cation of theorem proving to problem solving. Artificial intelligence, 2(3-
4):189–208, 1971. 2, 6

[11] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan gen-
eration through heuristic search. Journal of Artificial Intelligence Research,
14:253–302, 2001. 3, 27

[12] Henry Kautz and Bart Selman. Unifying sat-based and graph-based plan-
ning. In IJCAI, volume 99, pages 318–325, 1999. 3

[13] Maria Fox and Derek Long. Modelling Mixed Discrete-Continuous Domains
for Planning. Journal of Artificial Intelligence Research, 27(1):235–297, 2006.
3, 9

[14] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publish-
ers, 1991. 3

[15] Lydia E Kavraki and Steven M LaValle. Springer handbook of robotics,
2008. 4

[16] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The international journal of robotics research, 30(7):846–
894, 2011. 4

[17] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE transactions on Robotics and Automation, 12(4):566–580, 1996. 4

[18] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient approach
to single-query path planning. In Robotics and Automation, 2000. Proceed-
ings. ICRA’00. IEEE International Conference on, volume 2, pages 995–
1001. IEEE, 2000. 4

[19] Nils J Nilsson. Shakey the robot. Technical Report 323, Airtificial Intel-
lignece Center, SRI International, Menlo Park, California, 1984. 6

66

BIBLIOGRAPHY

[20] Christian Dornhege, Marc Gissler, Matthias Teschner, and Bernhard Nebel.
Integrating symbolic and geometric planning for mobile manipulation. In
Safety, Security & Rescue Robotics (SSRR), IEEE International Workshop
on, pages 1–6. IEEE, 2009. 6

[21] Jörg Hoffmann. The Metric-FF Planning System: Translating “Ignoring
Delete Lists” to Numeric State Variables. Journal of Artificial Intelligence
Research, 20:291–341, 2003. 7, 10

[22] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni,
and Fabio Mercorio. Heuristic Planning for PDDL+ Domains. In AAAI
Workshop: Planning for Hybrid Systems, Phoenix, Arizona, USA, July 2016.
7

[23] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and mo-
tion planning in the now. In Robotics and Automation (ICRA), IEEE Inter-
national Conference on, pages 1470–1477. IEEE, 2011. 7

[24] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion
planning in belief space. The International Journal of Robotics Research,
32(9-10):1194–1227, 2013. 7

[25] Camille Phiquepal and Marc Toussaint. Combined task and motion planning
under partial observability: An optimization-based approach. RSS Workshop
on Integrated Task and Motion Planning, 2017. 7

[26] Tomás Lozano-Pérez and Leslie Pack Kaelbling. A constraint-based method
for solving sequential manipulation planning problems. In Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference on, pages 3684–
3691. IEEE, 2014. 7

[27] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing
temporal planning domains. Journal of artificial intelligence research, 2003.
8

[28] J Hoffmann and S Edelkamp. The classical part of ipc-4: An overview.
Journal of AI Research, To appear, 2005. 8

[29] Ji-Ae Shin and Ernest Davis. Processes and continuous change in a sat-based
planner. Artificial Intelligence, 166(1-2):194–253, 2005. 8

[30] Giuseppe Della Penna, Benedetto Intrigila, Daniele Magazzeni, and Fabio
Mercorio. Upmurphi released: Pddl+ planning for hybrid systems. In Pro-
ceedings of the 2nd ICAPS Workshop on Model Checking and Automated
Planning (MOCHAP-15), pages 36–40, 2015. 8, 9

67

BIBLIOGRAPHY

[31] Amanda Jane Coles and Andrew Ian Coles. Pddl+ planning with events and
linear processes. In ICAPS, 2014. 8

[32] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. Forward-
chaining partial-order planning. In ICAPS, pages 42–49, 2010. 8

[33] Wiktor Mateusz Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio. Heuristic planning for pddl+ domains. In AAAI Workshop:
Planning for Hybrid Systems, 2016. 9, 27

[34] Michael Cashmore, Maria Fox, Derek Long, and Daniele Magazzeni. A com-
pilation of the full pddl+ language into smt. In AAAI Workshop: Planning
for Hybrid Systems, 2016. 9

[35] Franc Ivankovic, Patrik Haslum, Sylvie Thiébaux, Vikas Shivashankar, and
Dana S Nau. Optimal planning with global numerical state constraints. In
ICAPS, 2014. 9

[36] Sara Bernardini, Maria Fox, Derek Long, and Chiara Piacentini. Boosting
Search Guidance in Problems with Semantic Attachments. In International
Conference on Automated Planning and Scheduling (ICAPS), pages 29–37,
Pittsburgh, PA, USA, June 2017. 10

[37] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT press, 2005. 10, 13, 14

[38] Jonathan Ferrer-Mestres, Guillem Frances, and Hector Geffner. Com-
bined task and motion planning as classical ai planning. arXiv preprint
arXiv:1706.06927, 2017. 14

[39] Héctor Geffner. Functional strips: a more flexible language for planning
and problem solving. In Logic-based artificial intelligence, pages 187–209.
Springer, 2000. 14

[40] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierarchical task and mo-
tion planning in the now. In Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pages 1470–1477. IEEE, 2011. 14

[41] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Rid-
der, Arnau Carrera, Narcis Palomeras, Natalia Hurtos, and Marc Carreras.
Rosplan: Planning in the robot operating system. In ICAPS, pages 333–341,
2015. 15

68

BIBLIOGRAPHY

[42] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics & Automation Magazine,
4(1):23–33, 1997. 55

69

Appendix A

Codes and Files

A.1 DINO

A.1.1 upm_system

https://bitbucket.org/LittleSunny/masters- thesis/src/master/DiNo/include/
upm_system.cpp

A.1.2 upm_statecl

https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/include/
upm_statecl.hpp

A.1.3 upm_util

https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/include/
upm_util.hpp

A.1.4 upm_io.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/include/
upm_io.cpp

A.1.5 cpp_code.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/src/DiNo/
cpp_code.cpp

70

A.2 External Advisor

A.1.6 ump_epilog.hpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/
include/upm_epilog.hpp

A.2 External Advisor
https://bitbucket.org/LittleSunny/masters-thesis/src/master/DiNo/ex/ext_lib/

A.3 ROSPlan

A.3.1 PDDLProblemGenerator.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_planning_system/src/ProblemGeneration/PDDLProblemGenerator.cpp

A.3.2 planningsystem.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_planning_system/src/PlanningSystem.cpp

A.3.3 plannerinterface.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_planning_system/src/PlannerInterface.cpp

A.3.4 DINOEsteralPlanParser.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_planning_system/src/PlanParsing/DINOEsterelPlanParser.cpp

A.3.5 interfaced_planning_system.launch

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_planning_system/launch/interfaced_planning_system.launch

A.3.6 RPRoadmapServer.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_interface_mapping/src/RPRoadmapServer.cpp

71

A.4 pred_update_RRT_problem.pddl

A.3.7 RPRoadmapVisualization.cpp

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_interface_mapping/src/RPRoadmapVisualization.cpp

A.3.8 rosplan_roadmap_server.launch

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_interface_mapping/launch/rosplan_roadmap_server.launch

A.3.9 toy.launch

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/
rosplan_demos/launch/toy.launch

A.3.10 turtlebot_explorer.bash

https://bitbucket.org/LittleSunny/masters-thesis/src/master/src/ROSPlan/rosplan_demos/scripts/turtlebot_explore.bash

A.4 pred_update_RRT_problem.pddl

(define (problem landmark_task)
(:domain landmark)
(:objects

dummy1 dummy2 - covariance
kenny - robot
endpoint wp0 wp1 wp10 wp11 wp12 wp13 wp14 wp15

wp16 wp17 wp18 wp19 wp2 wp20 wp21 wp22
wp23 wp24 wp25 wp26 wp27 wp28 wp29 wp3
wp4 wp5 wp6 wp7 wp8 wp9 - waypoint

)
(:init

(connected endpoint wp0)
(connected endpoint wp10)
(connected endpoint wp11)
(connected endpoint wp13)
(connected endpoint wp17)
(connected endpoint wp19)
(connected endpoint wp21)
(connected endpoint wp22)

72

A.4 pred_update_RRT_problem.pddl

(connected endpoint wp23)
(connected endpoint wp25)
(connected endpoint wp26)
(connected endpoint wp29)
(connected endpoint wp6)
(connected endpoint wp8)
(connected wp0 wp1)
(connected wp0 wp5)
(connected wp0 wp6)
(connected wp0 wp7)
(connected wp0 wp9)
(connected wp0 wp11)
(connected wp0 wp14)
(connected wp0 wp16)
(connected wp0 wp19)
(connected wp0 wp21)
(connected wp0 wp22)
(connected wp0 wp26)
(connected wp0 wp27)
(connected wp0 wp28)
(connected wp0 endpoint)
(connected wp1 wp0)
(connected wp1 wp2)
(connected wp1 wp3)
(connected wp1 wp12)
(connected wp1 wp18)
(connected wp10 wp8)
(connected wp10 endpoint)
(connected wp11 wp0)
(connected wp11 wp29)
(connected wp11 endpoint)
(connected wp12 wp1)
(connected wp13 wp6)
(connected wp13 endpoint)
(connected wp14 wp0)
(connected wp15 wp3)
(connected wp16 wp0)
(connected wp16 wp17)
(connected wp17 wp16)
(connected wp17 endpoint)
(connected wp18 wp1)

73

A.4 pred_update_RRT_problem.pddl

(connected wp19 wp0)
(connected wp19 endpoint)
(connected wp2 wp1)
(connected wp20 wp3)
(connected wp21 wp0)
(connected wp21 wp24)
(connected wp21 endpoint)
(connected wp22 wp0)
(connected wp22 endpoint)
(connected wp23 wp9)
(connected wp23 wp25)
(connected wp23 endpoint)
(connected wp24 wp21)
(connected wp25 wp23)
(connected wp25 endpoint)
(connected wp26 wp0)
(connected wp26 endpoint)
(connected wp27 wp0)
(connected wp28 wp0)
(connected wp29 wp11)
(connected wp29 endpoint)
(connected wp3 wp1)
(connected wp3 wp4)
(connected wp3 wp15)
(connected wp3 wp20)
(connected wp4 wp3)
(connected wp5 wp0)
(connected wp6 wp0)
(connected wp6 wp8)
(connected wp6 wp13)
(connected wp6 endpoint)
(connected wp7 wp0)
(connected wp8 wp6)
(connected wp8 wp10)
(connected wp8 endpoint)
(connected wp9 wp0)
(connected wp9 wp23)
(observe)
(robot_at kenny wp0)
(= (cov) 1.22)
(= (dFactor) 0.5)

74

A.4 pred_update_RRT_problem.pddl

(= (distance endpoint wp0) 2.56223)
(= (distance endpoint wp10) 1.69189)
(= (distance endpoint wp11) 0.585235)
(= (distance endpoint wp13) 3.45145)
(= (distance endpoint wp17) 5.41872)
(= (distance endpoint wp19) 0.756637)
(= (distance endpoint wp21) 3.62836)
(= (distance endpoint wp22) 4.62871)
(= (distance endpoint wp23) 3.19531)
(= (distance endpoint wp25) 5.82087)
(= (distance endpoint wp26) 2.12603)
(= (distance endpoint wp29) 1.36473)
(= (distance endpoint wp6) 5.50273)
(= (distance endpoint wp8) 3.45579)
(= (distance wp0 wp1) 4.28077)
(= (distance wp0 wp5) 3.50036)
(= (distance wp0 wp6) 2.94364)
(= (distance wp0 wp7) 4.5467)
(= (distance wp0 wp9) 1.93132)
(= (distance wp0 wp11) 1.978)
(= (distance wp0 wp14) 1.30096)
(= (distance wp0 wp16) 6.03013)
(= (distance wp0 wp19) 2.78792)
(= (distance wp0 wp21) 1.1)
(= (distance wp0 wp22) 2.14009)
(= (distance wp0 wp26) 4.51054)
(= (distance wp0 wp27) 1.06888)
(= (distance wp0 wp28) 2.60192)
(= (distance wp0 endpoint) 2.56223)
(= (distance wp1 wp0) 4.28077)
(= (distance wp1 wp2) 2.70046)
(= (distance wp1 wp3) 1.72627)
(= (distance wp1 wp12) 1.54029)
(= (distance wp1 wp18) 2.90259)
(= (distance wp10 wp8) 2.77308)
(= (distance wp10 endpoint) 1.69189)
(= (distance wp11 wp0) 1.978)
(= (distance wp11 wp29) 1.37295)
(= (distance wp11 endpoint) 0.585235)
(= (distance wp12 wp1) 1.54029)
(= (distance wp13 wp6) 4.67467)

75

A.4 pred_update_RRT_problem.pddl

(= (distance wp13 endpoint) 3.45145)
(= (distance wp14 wp0) 1.30096)
(= (distance wp15 wp3) 1.90394)
(= (distance wp16 wp0) 6.03013)
(= (distance wp16 wp17) 2.09881)
(= (distance wp17 wp16) 2.09881)
(= (distance wp17 endpoint) 5.41872)
(= (distance wp18 wp1) 2.90259)
(= (distance wp19 wp0) 2.78792)
(= (distance wp19 endpoint) 0.756637)
(= (distance wp2 wp1) 2.70046)
(= (distance wp20 wp3) 3.85519)
(= (distance wp21 wp0) 1.1)
(= (distance wp21 wp24) 3.20975)
(= (distance wp21 endpoint) 3.62836)
(= (distance wp22 wp0) 2.14009)
(= (distance wp22 endpoint) 4.62871)
(= (distance wp23 wp9) 2.88531)
(= (distance wp23 wp25) 2.66693)
(= (distance wp23 endpoint) 3.19531)
(= (distance wp24 wp21) 3.20975)
(= (distance wp25 wp23) 2.66693)
(= (distance wp25 endpoint) 5.82087)
(= (distance wp26 wp0) 4.51054)
(= (distance wp26 endpoint) 2.12603)
(= (distance wp27 wp0) 1.06888)
(= (distance wp28 wp0) 2.60192)
(= (distance wp29 wp11) 1.37295)
(= (distance wp29 endpoint) 1.36473)
(= (distance wp3 wp1) 1.72627)
(= (distance wp3 wp4) 1.05475)
(= (distance wp3 wp15) 1.90394)
(= (distance wp3 wp20) 3.85519)
(= (distance wp4 wp3) 1.05475)
(= (distance wp5 wp0) 3.50036)
(= (distance wp6 wp0) 2.94364)
(= (distance wp6 wp8) 5.64646)
(= (distance wp6 wp13) 4.67467)
(= (distance wp6 endpoint) 5.50273)
(= (distance wp7 wp0) 4.5467)
(= (distance wp8 wp6) 5.64646)

76

A.5 waypoints_RRT

(= (distance wp8 wp10) 2.77308)
(= (distance wp8 endpoint) 3.45579)
(= (distance wp9 wp0) 1.93132)
(= (distance wp9 wp23) 2.88531)
(= (finalTrace) 0.5)
(= (predict_covariance) 0)
(= (relativeD) 0)
(= (update_covariance) 1.22)

)
(:goal (and

(robot_at kenny endpoint)
(< (cov) finalTrace)

))
(:metric minimize(total-time)))

A.5 waypoints_RRT

endpoint[2.45,0.75,0.0]
wp0[0,0,0.0]
wp1[-1.05,-4.15,0.0]
wp10[3.85,-0.2,0.0]
wp11[1.9,0.55,0.0]
wp12[0.45,-4.5,0.0]
wp13[-0.25,2.9,0.0]
wp14[0.05,1.3,0.0]
wp15[-4.4,-3.5,0.0]
wp16[-3.65,4.8,0.0]
wp17[-1.6,4.35,0.0]
wp18[-3.9,-4.7,0.0]
wp19[2.35,1.5,0.0]
wp2[1.65,-4.2,0.0]
wp20[-4.9,-1.25,0.0]
wp21[-1.1,0,0.0]
wp22[-1.7,-1.3,0.0]
wp23[3.55,-2.25,0.0]
wp24[-1.35,3.2,0.0]
wp25[3.85,-4.9,0.0]
wp26[3.85,2.35,0.0]
wp27[-0.2,-1.05,0.0]

77

A.6 landmark_RRT

wp28[-0.1,-2.6,0.0]
wp29[2.65,-0.6,0.0]
wp3[-2.75,-4.45,0.0]
wp4[-2.65,-3.4,0.0]
wp5[-3.5,-0.05,0.0]
wp6[-2.75,-1.05,0.0]
wp7[-4.5,0.65,0.0]
wp8[2.65,-2.7,0.0]
wp9[0.7,-1.8,0.0]

A.6 landmark_RRT

lm0[0,1.5,0]
lm1[1.5,-1,0]
lm2[1,-3.5,0]
lm4[-1.8,-3.4,0]
lm5[-3.2,-1,0]
lm6[2.45,0.75,0.0]

A.7 Initial test waypoint

wp0[0,0.0,0]
wp1[0,4.0,-1.57]
wp2[3,0.0,0]
wp3[2,2.0,0]
wp4[6,-2, 1.57]
wp5[5, 1, 3.14]

A.8 Initial test landmark

lm0[2,3,0]
lm1[4,6,0]
lm2[6,9, M_PI/3]
lm3[8,8, 0]
lm4[9,10, M_PI/4]
lm5[6,8, M_PI/6]

78

	1 Introduction
	1.1 Task Planning
	1.2 Motion Planning
	1.3 Combined Task and Motion Planning
	1.4 Organization

	2 Background and State-of-the-art
	2.1 Related Work
	2.2 Task Planner
	2.2.1 Heuristics in PDDL+
	2.2.2 Semantic Attachments in Task Planning

	2.3 Preliminaries
	2.3.1 Extended Kalman Filter
	2.3.2 System Modeling
	2.3.3 System Parameters

	2.4 Integrated Task and Motion Planning

	3 Problem Formulation and Implementation
	3.1 Domain and Problem Description
	3.1.1 Belief Updates with Semantic Attachments
	3.1.1.1 Initial Domain Declaration
	3.1.1.2 Initial Problem Declaration
	3.1.1.3 Predict and Update Event Domain Declaration
	3.1.1.4 Domain Declaration with RRT
	3.1.1.5 Automatic Problem Declaration from ROSPlan with RRT

	3.2 Software Architecture
	3.2.1 Planner Framework
	3.2.2 Planner Framework with Semantic Attachment
	3.2.3 External Library

	3.3 Integration Architecture
	3.3.1 Map Generation
	3.3.2 Waypoint Generation
	3.3.2.1 RRT over PRM
	3.3.2.2 RRT based Potential Field Algorithm

	3.3.3 Problem Generator
	3.3.4 Plan and Reference Trajectory Generation
	3.3.5 DiNo to Esterel Plan Generator
	3.3.6 Default Plan Execution and Trajectory generation

	4 Experiments and Results
	4.1 Abstract Example
	4.1.1 action and event for Belief Updates
	4.1.2 Single event Based Belief Updates
	4.1.3 Belief Update with RRT

	4.2 ROSPlan Simulation
	4.2.1 Playground Environment
	4.2.2 Corridor Environment

	4.3 Performance Analysis

	5 Conclusion and Future Work
	A Codes and Files
	A.1 DINO
	A.1.1 upm_system
	A.1.2 upm_statecl
	A.1.3 upm_util
	A.1.4 upm_io.cpp
	A.1.5 cpp_code.cpp
	A.1.6 ump_epilog.hpp

	A.2 External Advisor
	A.3 ROSPlan
	A.3.1 PDDLProblemGenerator.cpp
	A.3.2 planningsystem.cpp
	A.3.3 plannerinterface.cpp
	A.3.4 DINOEsteralPlanParser.cpp
	A.3.5 interfaced_planning_system.launch
	A.3.6 RPRoadmapServer.cpp
	A.3.7 RPRoadmapVisualization.cpp
	A.3.8 rosplan_roadmap_server.launch
	A.3.9 toy.launch
	A.3.10 turtlebot_explorer.bash

	A.4 pred_update_RRT_problem.pddl
	A.5 waypoints_RRT
	A.6 landmark_RRT
	A.7 Initial test waypoint
	A.8 Initial test landmark

